AB=48, DC=88
48+88=136
136÷2=68
Answer: LM=68
Remember that the length of the mid segment in a trapezoid is half the sum of the base lengths.
F(x)=(-2/((x+y-2)^(1/2))-(x+y+2)^(1/2)
the only irrational part of this expression is the (x+y-2)^(1/2) in the denominator, so, to rationalize this, you multiply the numerator and denominator by the denominator, as well as the other parts of the expression
also, you must multiply the -sqrt(x+y+2) by sqrt(x+y-2)/sqrt(x+y-2) to form a common denominator
(-2)/(x+y-2)^(1/2)-(x+y+2)^(1/2)(x+y-2)^(1/2)/(x+y-2)^(1/2)
(common denominator)
(-2-(x^2+xy+2x+xy+y^2+2y-2x-2y-4))/(x+y-2)^(1/2)
(FOIL)
(-2-x^2-y^2-2xy+4)/(x+y-2)^(1/2)
(Distribute negative)
(-x^2-y^2-2xy+2)/(x+y-2)^(1/2)
(Simplify numerator)
(-x^2-y^2-2xy+2)(x+y-2)^(1/2)/(x+y-2)^(1/2)(x+y-2)^(1/2)
(Rationalize denominator by multiplying both top and bottom by sqrt)
(-x^2-y^2-2xy+2)((x+y-2)^(1/2))/(x+y-2)
(The function is now rational)
=(-x^2-y^2-2xy+2)(sqrt(x+y-2))/(x+y-2)
Answer:
The picture that represent her drawing is uploaded below. The height is 8 ft and the base is 6 ft.
Step-by-step explanation:
Renee garden is triangular in shape . The area of the triangular garden is given as 24 ft² . The area of a triangle can be represented below.
Area of a triangle = 1/2bh
where
b = base
h = height
The drawing that represent Renee drawing is given below. The height is 8 ft and the base is 6 ft .
Using the formula
Area of a triangle = 1/2bh
Area of a triangle = 1/2 × 6 × 8
Area of a triangle = 48/2
Area of a triangle = 24 ft²