she would need 166 boxes. there is a remainder of 1. one book wont fit in a box
Answer:
the answer is B or D
Step-by-step explanation:
![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ h=-16t^2+\stackrel{\stackrel{v_o}{\downarrow }}{65}t](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20h%3D-16t%5E2%2B%5Cstackrel%7B%5Cstackrel%7Bv_o%7D%7B%5Cdownarrow%20%7D%7D%7B65%7Dt)
now, take a look at the picture below, so for 2) and 3) is the vertex of this quadratic equation, 2) is the y-coordinate and 3) the x-coordinate.


Answer:
im in the same question as you bro
Step-by-step explanation:
Answer:
since -3.73 is less than 1.645, we reject H₀.
Therefore this indicate that the proposed warranty should be modified
Step-by-step explanation:
Given that the data in the question;
p" = 13/20 = 0.65
Now the test hypothesis;
H₀ : p = 0.9
Hₐ : p < 0.9
Now lets determine the test statistic;
Z = (p" - p ) / √[p×(1-p)/n]
= (0.65 - 0.9) /√[0.9 × (1 - 0.9) / 20]
= -0.25 / √[0.9 × 0.1 / 20 ]
= -0.25 / √0.0045
= -0.25 / 0.067
= - 3.73
Now given that a = 0.05,
the critical value is Z(0.05) = 1.645 (form standard normal table)
Now since -3.73 is less than 1.645, we reject H₀.
Therefore this indicate that the proposed warranty should be modified