1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
6

How do I solve this finding the first four of the sequence?

Mathematics
1 answer:
Gemiola [76]3 years ago
5 0

Answer:

300,350,400,450

Step-by-step explanation:

the formula for any n term is:

tn=a1+(n-1)d

t1= 300+(1-1)d=300

t2= 300+(2-1)50= 350

t3= 300+(3-1)50= 400

t4= 300+(4-1)50 = 450

and so on...

You might be interested in
5x + 2y = 20, when x = 0.3
crimeas [40]
Y = 9.25 just multiply 5 by .3 and add the 2 and subract that to find y
4 0
3 years ago
Read 2 more answers
Use the given information to find the exact value of the trigonometric function
eimsori [14]
\begin{gathered} \csc \theta=-\frac{6}{5} \\ \tan \theta>0 \\ \cos \frac{\theta}{2}=\text{?} \end{gathered}

Half Angle Formula

\cos \frac{\theta}{2}=\pm\sqrt[\square]{\frac{1+\cos\theta}{2}}\tan \theta>0\text{ and csc}\theta\text{ is negative in the third quadrant}\begin{gathered} \csc \theta=-\frac{6}{5}=\frac{r}{y} \\ x^2+y^2=r^2 \\ x=\pm\sqrt[\square]{r^2-y^2} \\ x=\pm\sqrt[\square]{6^2-(-5)^2} \\ x=\pm\sqrt[\square]{36-25} \\ x=\pm\sqrt[\square]{11} \\ \text{x is negative since the angle is on the 3rd quadrant} \end{gathered}\begin{gathered} \cos \theta=\frac{x}{r}=\frac{-\sqrt[\square]{11}}{6} \\ \cos \frac{\theta}{2}=\pm\sqrt[\square]{\frac{1+\cos\theta}{2}} \\ \cos \frac{\theta}{2}is\text{ also negative in the 3rd quadrant} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{1+\frac{-\sqrt[\square]{11}}{6}}{2}} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{\frac{6-\sqrt[\square]{11}}{6}}{2}} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}} \\  \\  \end{gathered}

Answer:

\cos \frac{\theta}{2}=-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}}

Checking:

\begin{gathered} \frac{\theta}{2}=\cos ^{-1}(-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}}) \\ \frac{\theta}{2}=118.22^{\circ} \\ \theta=236.44^{\circ}\text{  (3rd quadrant)} \end{gathered}

Also,

\csc \theta=\frac{1}{\sin\theta}=\frac{1}{\sin (236.44)}=-\frac{6}{5}\text{ QED}

The answer is none of the choices

7 0
1 year ago
Can anyone help me with this please ? I’ll mark you as a brainliest
ira [324]

Answer:

Step-by-step explanation:

7 0
2 years ago
Please help me i have limited time and im confused
luda_lava [24]
The expected value is $8,000.
4 0
2 years ago
What is the reciprocal of 4/12?​
fenix001 [56]

Answer: 12/4 or 3

Step-by-step explanation: Switch the numerator and denominator. This should leave you with the answer above.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A triangle has sides lengths of 14cm, 48cm and 58 cm. Classify it as acute, obtuse or right
    8·1 answer
  • What is the value of the function f(x)=1/4x-3 when x = 12?
    8·1 answer
  • What's times what equals 30
    14·2 answers
  • Simplify using distributive property (m 6)(m-7)
    14·1 answer
  • Can you please help me and answer both questions please
    11·1 answer
  • Evaluate the expression uv^2 + 5uv + u^2 for u = 3 and v = 4. HELP PLEASE!!
    8·1 answer
  • Ill do anthing please help!!
    6·2 answers
  • Which set of side lengths form a right triangle? PLEASE HELP!!! WILL MARK BRAINLIEST
    13·1 answer
  • I have 225 in my account I can spend all but 20%
    12·2 answers
  • Solve the equation.<br><br> −23x+37=12
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!