Answer:
The answer is A.
Step-by-step explanation:
So we have the two equations:

To make a substitution of the second equation into the first equation, we need to isolate the <em>y </em>variable in the second equation. Thus:

Now, we can substitute this into the first equation. Therefore:

Answer:
A repeating decimal is not a rational number and The product of two irrational numbers is always rational
Step-by-step explanation:
One statement that is not true is "The product of two irrational numbers is always rational". Take for example the irrational numbers √2 and √3. Their product is √6 which is also irrational.
The other false statement is "A repeating decimal is not a rational number". Take for example the repeating decimal 0.33333..... It can be written as 1/3 which is a rational number.
Explanation:
Basically, you can do it in many ways. But just, in my opinion, exactly linear algebra was made for such cases.
the optimal way is to do it with Cramer's rule.
First, find the determinant and then find the determinant x, y, v, u.
Afterward, simply divide the determinant of variables by the usual determinant.
eg.
and etc.
I think that is the best way to solve it without a hustle of myriad of calculations reducing it to row echelon form and solving with Gaussian elimination.
Answer:
If this question is so easy then why are you asking us do it yourself
Step-by-step explanation: