The first one is 50 cm
second is 153 ft
third one is 132 m
sorry if it’s wrong
Answer:
A) The best way to picture this problem is with a probability tree, with two steps.
The first branch, the person can choose red or blue, being 2 out of five (2/5) the chances of picking a red marble and 3 out of 5 of picking a blue one.
The probabilities of the second pick depends on the first pick, because it only can choose of what it is left in the urn.
If the first pick was red marble, the probabilities of picking a red marble are 1 out of 4 (what is left of red marble out of the total marble left int the urn) and 3 out of 4 for the blue marble.
If the first pick was the blue marble, there is 2/4 of chances of picking red and 2/4 of picking blue.
B) So a person can have a red marble and a blue marble in two ways:
1) Picking the red first and the blue last
2) Picking the blue first and the red last
C) P(R&B) = 3/5 = 60%
Step-by-step explanation:
C) P(R&B) = P(RB) + P(BR) = (2/5)*(3/4) + (3/5)*(2/4) = 3/10 + 3/10 = 3/5
See the attached figure to better understand the problem
let
L-----> length side of the cuboid
W----> width side of the cuboid
H----> height of the cuboid
we know that
One edge of the cuboid has length 2 cm-----> <span>I'll assume it's L
so
L=2 cm
[volume of a cuboid]=L*W*H-----> 2*W*H
40=2*W*H------> 20=W*H-------> H=20/W------> equation 1
[surface area of a cuboid]=2*[L*W+L*H+W*H]----->2*[2*W+2*H+W*H]
100=</span>2*[2*W+2*H+W*H]---> 50=2*W+2*H+W*H-----> equation 2
substitute 1 in 2
50=2*W+2*[20/W]+W*[20/W]----> 50=2w+(40/W)+20
multiply by W all expresion
50W=2W²+40+20W------> 2W²-30W+40=0
using a graph tool------> to resolve the second order equation
see the attached figure
the solutions are
13.52 cm x 1.48 cm
so the dimensions of the cuboid are
2 cm x 13.52 cm x 1.48 cm
or
2 cm x 1.48 cm x 13.52 cm
<span>Find the length of a diagonal of the cuboid
</span>diagonal=√[(W²+L²+H²)]------> √[(1.48²+2²+13.52²)]-----> 13.75 cm
the answer is the length of a diagonal of the cuboid is 13.75 cm
7+z / 2
z = 10
replace the value of z
7 +10 /2
use order of operations ( division comes before addition)
7+5 = 12
<span>slope
m = (1 - 1)/(0 + 2) = 0
(x1, y1) as (-2, 1)
</span><span>point-slope form</span><span>
y - y1 = m(x - x1)
y - 1 = 0(x + 2)
y - 1 = 0
y = 1</span>