Answer:
84 possible paths
Step-by-step explanation:
Given
--- 3 blocks north
--- 6 blocks east
Required
Number of distinct path
To solve this question, we make use of the following formula
![^{m+n}C_n \ =\ ^{m+n}C_m](https://tex.z-dn.net/?f=%5E%7Bm%2Bn%7DC_n%20%5C%20%3D%5C%20%5E%7Bm%2Bn%7DC_m)
The above formula implies that;
On a single path, there is a total of m + n steps to get to a particular position, where each path is either in m direction or n direction.
In this case:
![m = 3](https://tex.z-dn.net/?f=m%20%3D%203)
![n = 6](https://tex.z-dn.net/?f=n%20%3D%206)
So, we have:
![^{m + n}C_n = ^{3+6}C_6](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5E%7B3%2B6%7DC_6)
![^{m + n}C_n = ^9C_6](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5E9C_6)
Apply combination formula
![^{m + n}C_n = \frac{9!}{(9-6)!6!}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B9%21%7D%7B%289-6%29%216%21%7D)
![^{m + n}C_n = \frac{9!}{3!*6!}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B9%21%7D%7B3%21%2A6%21%7D)
Expand the numerator
![^{m + n}C_n = \frac{9*8*7*6!}{3!*6!}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B9%2A8%2A7%2A6%21%7D%7B3%21%2A6%21%7D)
![^{m + n}C_n = \frac{9*8*7}{3!}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B9%2A8%2A7%7D%7B3%21%7D)
Expand the denominator
![^{m + n}C_n = \frac{9*8*7}{3*2*1}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B9%2A8%2A7%7D%7B3%2A2%2A1%7D)
![^{m + n}C_n = \frac{504}{6}](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%20%5Cfrac%7B504%7D%7B6%7D)
![^{m + n}C_n = 84](https://tex.z-dn.net/?f=%5E%7Bm%20%2B%20n%7DC_n%20%3D%2084)
<em>Hence, there are 84 possible paths</em>
<em></em>
<em> will also give the same result</em>