Based on the information given, the computation shows that the distance between them is 2.47 miles.
<h3>
Solving the distance.</h3>
Since one has bearing 41°45', this will be: = 41° + (45/60) = 41° + 0.75 = 41.75°.
The other has bearing 59°13'. This will be:
= 59° + (13/60) = 59° + 0.22 = 59.22°.
The difference of the angles will be:
= 59.22° - 41.75°
= 17.47°
Let the distance between them be represented by c. Therefore, we'll use cosine law to solve the question. This will be:
c² = a² + b² - 2ab cos 17.47°
c² = 20² + 20² - (2 × 20 × 20 × 0.19)
c² = 6.07459
c = 2.47
Learn more about distance on:
brainly.com/question/2854969
Answer:
f=2/3
Step-by-step explanation:
The domain is (0,-5) and range is (0,-7) the y is the range and the x is the domain
Answer is A
Step-by-step explanation:
Go over to the left 3 times then up 6
Answer:
a=2.48
c=9.52
Step-by-step explanation:
a+c=12
4a+7.5c=72.5 Given
a+c=12
-4a-7.5c=-72.5 multiply the equation by negative 1
-3a-6.5c=-60.5 simplify
-3a=-60.5+6.5c add 6.5c to both sides
a=-20.17+2.17c divide it by 3
now you would take that equation and plug it into an equation you already have since you have something to plug in for a, the easiest one to do is a+c=12
(-20.17+2.17c)+c=12 plug in the equation
-20.17+3.17c=12 simplify by solving for c
3.17c=30.17 add 20.17 to both sides
c=9.52 divide both sides by 3.17
now since you have found c, you can plug it in to you equation to solve for a now (use the ones from the second step). I am using the equation a+c=12.
a+9.52=12 plug in the variable and solve for a
a=2.48 subtract 9.52 to both sides
a=2.48
c=9.52