Answer:Therefore, there must be a direct relationship between these volumes of gases and the number of molecules they contain. Avogadro's law says that: Equal volumes of different gaseous substances, measured under the same pressure and temperature conditions, contain the same number of molecules.
Explanation:I hope it works for you.
Answer:
<h3>A-5N B-6N C-7N D-8N</h3>
Explanation:
i hope it helps ;)
Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
1)Delta H=(Delta H of reactants)-(Delta H of products)
2)And we know CO have 3 bond CO and CO2 have 2 bond that each of them are 2 bond, please see the picture!
so lets answer it:

Chemical equilibrium is reach when the concentrations of the product and reactants will no longer change with time. this does not mean that there is no change in concentration, only the net change is zero. the forward rate of reaction is now equal to backward rate of reaction.