The standard for is Y=-5/3x +3
Answer: y= -2x + 3
Step-by-step explanation:
The mean is usually the best measure of central tendency to use when your data distribution is continuous and symmetrical, such as when your data is normally distributed. However, it all depends on what you are trying to show from your data.
Check the picture below.
since the vertical distance, namely the y-coordinate, is twice as much as the horizontal, then if the horizontal is "x", the vertical one must be 2x.
let's find the hypotenuse first.
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=\stackrel{adjacent}{x}\\ b=\stackrel{opposite}{2x}\\ \end{cases} \\\\\\ c=\sqrt{x^2+(2x)^2}\implies c=\sqrt{x^2+4x^2}\implies c=\sqrt{5x^2}\implies c=x\sqrt{5} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7Bx%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B2x%7D%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7Bx%5E2%2B%282x%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7Bx%5E2%2B4x%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B5x%5E2%7D%5Cimplies%20c%3Dx%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{2~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }}{\stackrel{hypotenuse}{~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ \sqrt{5}}}\implies \stackrel{\textit{and rationalizing the denominator}~\hfill }{\cfrac{2}{\sqrt{5}}\cdot \cfrac{\sqrt{5}}{\sqrt{5}}\implies \cfrac{2\sqrt{5}}{(\sqrt{5})^2}\implies \cfrac{2\sqrt{5}}{5}}](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B2~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%5Csqrt%7B5%7D%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Band%20rationalizing%20the%20denominator%7D~%5Chfill%20%7D%7B%5Ccfrac%7B2%7D%7B%5Csqrt%7B5%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%7B5%7D%7D%7B%5Csqrt%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B%28%5Csqrt%7B5%7D%29%5E2%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B5%7D%7D)