Answer:
7x+12 because there is 8x then you subtract 1x which 'll equal 7x and add the 12
2 x 117
3 x 78
6 x 39
9 x 26
13 x 18
Answer:
4
Step-by-step explanation:
f(p) = 3p-2
Let p=2
f(2) = 3*2-2
= 6-2
= 4
This question is in reverse (in two ways):
<span>1. The definition of an additive inverse of a number is precisely that which, when added to the number, will give a sum of zero. </span>
<span>The real problem, in certain fields, is usually to show that for all numbers in that field, there exists an additive inverse. </span>
<span>Therefore, if you tell me that you have a number, and its additive inverse, and you plan to add them together, then I can tell you in advance that the sum MUST be zero. </span>
<span>2. In your question, you use the word "difference", which does not work (unless the number is zero - 0 is an integer AND a rational number, and its additive inverse is -0 which is the same as 0 - the difference would be 0 - -0 = 0). </span>
<span>For example, given the number 3, and its additive inverse -3, if you add them, you get zero: </span>
<span>3 + (-3) = 0 </span>
<span>However, their "difference" will be 6 (or -6, depending which way you do the difference): </span>
<span>3 - (-3) = 6 </span>
<span>-3 - 3 = -6 </span>
<span>(because -3 is a number in the integers, then it has an additive inverse, also in the integers, of +3). </span>
<span>--- </span>
<span>A rational number is simply a number that can be expressed as the "ratio" of two integers. For example, the number 4/7 is the ratio of "four to seven". </span>
<span>It can be written as an endless decimal expansion </span>
<span>0.571428571428571428....(forever), but that does not change its nature, because it CAN be written as a ratio, it is "rational". </span>
<span>Integers are rational numbers as well (because you can always write 3/1, the ratio of 3 to 1, to express the integer we call "3") </span>
<span>The additive inverse of a rational number, written as a ratio, is found by simply flipping the sign of the numerator (top) </span>
<span>The additive inverse of 4/7 is -4/7 </span>
<span>and if you ADD those two numbers together, you get zero (as per the definition of "additive inverse") </span>
<span>(4/7) + (-4/7) = 0/7 = 0 </span>
<span>If you need to "prove" it, you begin by the existence of additive inverses in the integers. </span>
<span>ALL integers each have an additive inverse. </span>
<span>For example, the additive inverse of 4 is -4 </span>
<span>Next, show that this (in the integers) can be applied to the rationals in this manner: </span>
<span>(4/7) + (-4/7) = ? </span>
<span>common denominator, therefore you can factor out the denominator: </span>
<span>(4 + -4)/7 = ? </span>
<span>Inside the bracket is the sum of an integer with its additive inverse, therefore the sum is zero </span>
<span>(0)/7 = 0/7 = 0 </span>
<span>Since this is true for ALL integers, then it must also be true for ALL rational numbers.</span>
The cost to mail a 2-lb package is $7.
The cost to mail a 2-lb, 1 oz package is $7+$0.30(1).
That to mail a 2-lb, 2 oz package is $7+$0.30(2) = $7.60.
Following this pattern, the general formula is f(x) = $7 + $0.30x, where x represents the number of ounces OVER 2 lb.