The inverse of the function x^7 is x^-7 and it is also a function.
An inverse function or an anti function is defined as a function, which can reverse into another function.
A standard method to find inverse of a function is to set y=f(x)
let y= f(x)=x^7
thus
=x
thus
(y)=![\sqrt[7]{y}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7By%7D)
thus ![f^{-1} (x)=\sqrt[7]{x}](https://tex.z-dn.net/?f=f%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B7%5D%7Bx%7D)
(To verify this if a function is inverse or not we are required to check for the identity)
f(
(x))=
(f(x))=x
Therefore, The inverse of the function x^7 is x^-7 and it is also a function.
For further reference:
brainly.com/question/2541698?referrer=searchResults
#SPJ4
The correct answer is A, if you use photomath you can usually find the answers to most algebra problems
For this question the answer would be x=-3 and x=-2
Answer: I believe the 23rd, but if its in 10 years I must be wrong
I graphed the equation, but replaced t with x
the answer is A
these are filler words so I can submit it haha