<h3>
Answer:</h3>
Any 1 of the following transformations will work. There are others that are also possible.
- translation up 4 units, followed by rotation CCW by 90°.
- rotation CCW by 90°, followed by translation left 4 units.
- rotation CCW 90° about the center (-2, -2).
<h3>
Step-by-step explanation:</h3>
The order of vertices ABC is clockwise, as is the order of vertices A'B'C'. Thus, if reflection is involved, there are two (or some other even number of) reflections.
The orientation of line CA is to the east. The orientation of line C'A' is to the north, so the figure has been rotated 90° CCW. In general, such rotation can be accomplished by a single transformation about a suitably chosen center. Here, we're told there is <em>a sequence of transformations</em> involved, so a single rotation is probably not of interest.
If we rotate the figure 90° CCW, we find it ends up 4 units east of the final position. So, one possible transformation is 90° CCW + translation left 4 units.
If we rotate the final figure 90° CW, we find it ends up 4 units north of the starting position. So, another possible transformation is translation up 4 units + rotation 90° CCW.
Of course, rotation 90° CCW in either case is the same as rotation 270° CW.
_____
We have described transformations that will work. What we don't know is what is in your drop-down menu lists. There are many other transformations that will also work, so guessing the one you have available is difficult.
<span>4264.00 this is the answer
hope it helps
</span>
Answer:
Step-by-step explanation:
Given that a small business assumes that the demand function for one of its new products can be modeled by

Substitute the given values for p and x to get two equations in c and k

Dividing on by other we get

Substitute value of k in any one equation

b) Revenue of the product is demand and price
i.e. R(x) = p*x = 
Use Calculus derivative test to find max Revenue
R'(x) =
EquateI derivative to 0
1-0.000589x =0
x = 1698.037
When x = 1698 and p = 16.56469
Answer:

Step-by-step explanation:


(combine like terms)

Hope this helps :)