Part A. You have the correct first and second derivative.
---------------------------------------------------------------------
Part B. You'll need to be more specific. What I would do is show how the quantity (-2x+1)^4 is always nonnegative. This is because x^4 = (x^2)^2 is always nonnegative. So (-2x+1)^4 >= 0. The coefficient -10a is either positive or negative depending on the value of 'a'. If a > 0, then -10a is negative. Making h ' (x) negative. So in this case, h(x) is monotonically decreasing always. On the flip side, if a < 0, then h ' (x) is monotonically increasing as h ' (x) is positive.
-------------------------------------------------------------
Part C. What this is saying is basically "if we change 'a' and/or 'b', then the extrema will NOT change". So is that the case? Let's find out
To find the relative extrema, aka local extrema, we plug in h ' (x) = 0
h ' (x) = -10a(-2x+1)^4
0 = -10a(-2x+1)^4
so either
-10a = 0 or (-2x+1)^4 = 0
The first part is all we care about. Solving for 'a' gets us a = 0.
But there's a problem. It's clearly stated that 'a' is nonzero. So in any other case, the value of 'a' doesn't lead to altering the path in terms of finding the extrema. We'll focus on solving (-2x+1)^4 = 0 for x. Also, the parameter b is nowhere to be found in h ' (x) so that's out as well.
Using the binomial distribution, it is found that there is a 0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
Considering that there are 4 questions, and each has 5 choices, the parameters are given as follows:
n = 4, p = 1/5 = 0.2.
The probability that he answers exactly 1 question correctly in the last 4 questions is P(X = 1), hence:


0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Answer:
When we have a function f(x), the domain of the function is the set of all the inputs that "work" (Not only in a mathematical way, the context is also important) with the function f(x)
In this case, we have a function M(p) = $2*p
This function represents the amount of money collected depending on the number of people who ride on the ferris whell.
Then p can be only a whole number (we can not have 1.5 people, only whole numbers of people).
And we also know that the maximum capacity of the ferris is 64 people.
Then:
p ≤ 64
And we also should add the restriction:
0 ≤ p ≤ 64
(Because p can't be smaller than zero)
Such that p should also be an integer, then, the domain is:
D: p ∈ Z, p ∈ {0, 1, 2, ..., 64}
Answer:
answer is choice 4 because in te given angle A and angle B are congrunt and if they are acute the degree measure is 0-90
2 3/8 - 1 7/8
Change to improper fractions
19/8 - 15/8 = 4/8 = 1/2