<span>Let's make a few assumptions.
1. The paratrooper's lowest speed will be just prior to impact.
2. Since the jump was from a relatively low altitude, the paratrooper used a static line and the parachute should have opened almost immediately upon jumping.
So let's convert 100 mi/h to ft/s
100 mi/h * 5280 ft/mi / 3600 s/h = 146.67 ft/sec
Given the 1st assumption above, the MAXIMUM distance the paratrooper would have fallen would be 8 seconds at 146.67 ft/s, so
8 s * 146.67 ft/s = 1173.36 ft
The calculated distance is close to the jump distance, which agrees with both assumptions 1 and 2. So this account does seem reasonable.
Additionally, looking for the speed of a parachutist doing a freefall in the belly-to-earth position with arms and legs outspread, they will generally reach a terminal velocity of 120 mi/h which is slightly faster than the 100 mi/h in the article. This too is in agreement with the defective parachute flapping and causing some extra air resistance.</span>
D) the north star is not part of our solar system...
hope this helps!
AC can be produced using a device called an alternator. This device is a special type of electrical generator designed to produce alternating current. A loop of wire is spun inside of a magnetic field, which induces a current along the wire.
The answer is
6.67 Ohms (I tried to find the ohms sign but it looks like the lululemon logo)
Answer:
a)
b)
Explanation:
The gravitational force on the satellite is calculated with Newton's Gravitation Law:

Where
is Earth's mass,
is the satellite mass,
is the distance between their centers, where
is the height of the satellite (from Earth's surface) and
is Earth's radius, and
is the gravitational constant.
a) With these values we then have:

b) And the fraction this force is of the satellite’s weight <em>W=mg</em> is:
