The surface area of the triangular prism is of 140 cm².
<h3>What is the surface area of a prism?</h3>
It is the sum of the areas of all faces of a prism. In this problem, the prism has these following faces:
- One rectangle of dimensions 8 cm and 6 + 4 + 5 = 15 cm.
- Two right triangles with sides 4 cm and 5 cm.
For a rectangle, the area is given by the multiplication of the dimensions, hence:
Ar = 8 x 15 = 120 cm²
For each right triangle, the area is given by half the multiplication of the sides, hence:
At = 2 x 0.5 x 4 x 5 = 20 cm².
Then the surface area of the prism is:
S = 120 cm² + 20 cm² = 140 cm².
More can be learned about surface area at brainly.com/question/28123954
#SPJ1
We factor the denominators
Factor x^2 - 16
x^2 - 4^2
We use a^2 - b^2 = (a+b)(a-b)
so x^2 - 4^2 = (x+4)(x-4)
Replace it in the given equation
Excluded values are the values that makes the denominator 0
we have (x-4) and (x+4) in the denominator
We set the denominator =0 and solve for x
x-4 =0
Add 4 on both sides
x= 4
x+4=0
subtract 4 onboth side
so x= -4
Excluded values are x=-4 and x=4
Answer:
Both are right.
Step-by-step explanation:
The two are both right.
Multiplication in algebra obeys the cummutative law ( a * b = b * a).
Step-by-step explanation:
the question is not correct
edit it and I will answer u in comments
Answer:
see below
Step-by-step explanation:
The odd degree (7) tells you the end behaviors are in opposite directions. The negative leading coefficient (-4) tells you the sign of y will be opposite the sign of x.
For x going toward negative infinity, y goes toward positive infinity.
For x going toward positive infinity, y goes toward negative infinity.