Answer:
x = -0.6
y = 2.2
z = 2
Step-by-step explanation:
2x + y - 2z = -3
x + 3y - z = 4
3x + 4y - z = 5
Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)
2 1 -2 -3
1 3 -1 4
3 4 -1 5
R1 / 2 → R1 (divide the 1 row by 2)
1 0.5 -1 -1.5
1 3 -1 4
3 4 -1 5
R2 - 1 R1 → R2 (multiply 1 row by 1 and subtract it from 2 row); R3 - 3 R1 → R3 (multiply 1 row by 3 and subtract it from 3 row)
1 0.5 -1 -1.5
0 2.5 0 5.5
0 2.5 2 9.5
R2 / 2.5 → R2 (divide the 2 row by 2.5)
1 0.5 -1 -1.5
0 1 0 2.2
0 2.5 2 9.5
R1 - 0.5 R2 → R1 (multiply 2 row by 0.5 and subtract it from 1 row); R3 - 2.5 R2 → R3 (multiply 2 row by 2.5 and subtract it from 3 row)
1 0 -1 -2.6
0 1 0 2.2
0 0 2 4
R3 / 2 → R3 (divide the 3 row by 2)
1 0 -1 -2.6
0 1 0 2.2
0 0 1 2
R1 + 1 R3 → R1 (multiply 3 row by 1 and add it to 1 row)
1 0 0 -0.6
0 1 0 2.2
0 0 1 2
x = -0.6
y = 2.2
z = 2
Answer:
Its A dude
Step-by-step explanation:
Answer:definition of midpoint, angle BCA is congruent to angle DCA
Answer:
get a tutor 123456777654345678
Step-by-step explanation:
Answer:
It is a perfect square. Explanation below.
Explanation:
Perfect squares are of the form
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
. In polynomials of x, the a-term is always x.(
(
x
+
c
)
2
=
x
2
+
2
c
x
+
c
2
)
x
2
+
8
x
+
16
is the given trinomial. Notice that the first term and the constant are both perfect squares:
x
2
is the square of x and 16 is the square of 4.
So we find that the first and last terms correspond to our expansion. Now we must check if the middle term,
8
x
is of the form
2
c
x
.
The middle term is twice the constant times x, so it is
2
×
4
×
x
=
8
x
.
Okay, we found out that the trinomial is of the form
(
x
+
c
)
2
, where
x
=
x
and
c
=
4
.
Let us rewrite it as
x
2
+
8
x
+
16
=
(
x
+
4
)
2
. Now we can say it is a perfect square, as it is the square of
(
x
+
4
)
.