I rerun this most-read post about when human life begins every time that the discussion resurges, which is usually in the shadow of proposed restrictions on women’s reproductive rights. Strong feelings always seem to trump biological facts. Confusion among politicians appears to be apparent concerning when certain events begin or structures appear; whether to track development from fertilization (conception) or the last menstrual period; and even the distinction between an embryo and a fetus. A 4 or 6 week prenatal human is not a fetus — the difference is not arbitrary, it has biological meaning.
Answer:
The answer is nuclear fusion
Explanation:
Solar energy is created by nuclear fusion that takes place in the sun. Fusion occurs when protons of hydrogen atoms violently collide in the sun's core and fuse to create a helium atom.
Answer:
2 electrons
Explanation:
According to the octet rule, atoms must bond to each other, sharing electrons among themselves in an attempt to complete their valence shell (last layer of the electrosphere). In other words, an atom becomes stable when it has 8 electrons in its valence shell.
Oxygen atoms have six electrons in their valence shell, so to achieve the stability suggested by the octet rule (eight electrons), these atoms share two electrons, forming one oxygen gas (O₂) molecule.
Hypothalamus: a region of the forebrain below the thalamus which coordinates both the autonomic nervous system and the activity of the pituitary, controlling body temperature, thirst, hunger, and other homeostatic systems, and involved in sleep and emotional activity.
Insulin: a hormone produced in the pancreas by the islets of Langerhans, which regulates the amount of glucose in the blood. The lack of insulin causes a form of diabetes.
Predisposed: make someone liable or inclined to a specified attitude, action, or condition.
Answer:
Neurons, as with other excitable cells in the body, have two major physiological properties: irritability and conductivity. A neuron has a positive charge on the outer surface of the cell membrane due in part to the action of an active transport system called the sodium potassium pump. This system moves sodium (Na+) out of the cell and potassium (K+) into the cell. The inside of the cell membrane is negative, not only due to the active transport system but also because of intracellular proteins, which remain negative due to the intracellular pH and keep the inside of the cell membrane negative.
Explanation:
Neurons are cells with the capacity to transmit information between one another and also with other tissues in the body. This information is transmitted thanks to the release of substances called <em>neurotransmitters</em>, and this transmission is possible due to the <em>electrical properties </em>of the neurons.
For the neurons (and other excitable cells, such as cardiac muscle cells) to be capable of conducting the changes in their membranes' voltages, they need to have a<em> resting membrane potential</em>, which consists of a specific voltage that is given because of the electrical nature of both the inside and the outside of the cell. <u>The inside of the cell is negatively charged, while the outside is positively charged</u> - this is what generates the resting membrane potential. When the membrane voltage changes because the inside of the cell is becoming less negative, the neuron is being excited and - if this excitation reaches a threshold - an action potential will be fired. But how does the voltage changes? This happens because the distribution of ions in the intracellular and extracellular fluids is very dissimilar and when the sodium channels in the cell membrane are opened (because of an external stimulus), sodium enters the cell rapidly to balance out the difference in this ion concentration. The sudden influx of this positively-charged ion is what makes the inside of the neuron become less negative. This event is called <em>depolarization of the membrane</em>.