Laws that implemented the consumers' right to be informed forbid misleading advertising.
Answer is C.
Answer:
the speed of the car at the top of the vertical loop 
the magnitude of the normal force acting on the car at the top of the vertical loop 
Explanation:
Using the law of conservation of energy ;


The magnitude of the normal force acting on the car at the top of the vertical loop can be calculated as:
![F_{N} = \frac{mv^2_{top}}{R} \ - mg\\\\F_{N} = \frac{m(2.0 \sqrt{gR})^2}{R} \ - mg\\\\F_{N} = [(2.0^2-1]mg\\\\F_{N} = [(2.0)^2 -1) (50*10^{-3} \ kg)(9.8 \ m/s^2]\\\\](https://tex.z-dn.net/?f=F_%7BN%7D%20%3D%20%5Cfrac%7Bmv%5E2_%7Btop%7D%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5Cfrac%7Bm%282.0%20%5Csqrt%7BgR%7D%29%5E2%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%5E2-1%5Dmg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%29%5E2%20-1%29%20%2850%2A10%5E%7B-3%7D%20%5C%20kg%29%289.8%20%5C%20m%2Fs%5E2%5D%5C%5C%5C%5C)

There should be a small amount of play in the wheel when the steering is locked. Gently pull the key from the ignition while you slowly jiggle the steering wheel back and forth. If this is the cause of the problem, the key should come out after a little effort.
If you mean gravitational force, then it is GMm/r^2, which is G(68)(.91)/ (the distance between you and the laptop), where G is the universal gravitational constant
Answer:
Final speed = 2.067 m/s
Explanation:
We are told that the child weighs 26 kg.
Also, that the wagon weighs 5kg.
Thus,initial mass of the child and wagon with ball is;
m_i = 26 + 5 = 31 kg.
Also, we are told that the child now dropped 1.5 kg ball from the wagon. So,
Final mass is;
m_f = 26 + 5 - 1 = 30 kg
Now, from conservation of linear momentum, we know that;
Initial momentum = final momentum
Thus;
m_i * v_i = m_f * v_f
Where v_i is initial velocity and v_f is final velocity.
Making v_f the subject, we have;
v_f = (m_i * v_i)/m_f
We are given that initial velocity v_i = 2 m/s
Plugging in the relevant values, we have;
v_f = (31 * 2)/30
v_f = 2.067 m/s