Answer:
The required formula is:
Step-by-step explanation:
The total number of squares of the the first term = 4
The total number of squares of the the second term = 7
The total number of squares of the the third term = 10
so,



Finding the common difference d


As the common difference 'd' is same, it means the sequence is in arithmetic.
So
If the initial term of an arithmetic progression is
and the common difference of successive members is d, then the nth term of the sequence
is given by:

Therefore, the required formula is:
italian society entered a new era of artistic and academic achievement
Correct me if im wrong but the answer is (B) hope this helps!
Answer:
2.c 3.a 4.b
Step-by-step explanation:
just looked at it carefully
Take the homogeneous part and find the roots to the characteristic equation:

This means the characteristic solution is

.
Since the characteristic solution already contains both functions on the RHS of the ODE, you could try finding a solution via the method of undetermined coefficients of the form

. Finding the second derivative involves quite a few applications of the product rule, so I'll resort to a different method via variation of parameters.
With

and

, you're looking for a particular solution of the form

. The functions

satisfy


where

is the Wronskian determinant of the two characteristic solutions.

So you have




So you end up with a solution

but since

is already accounted for in the characteristic solution, the particular solution is then

so that the general solution is