1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
2 years ago
11

Please help h(-6)= -x^2+8

Mathematics
1 answer:
Igoryamba2 years ago
5 0

Answer:

take a break kid you must enjoy life :(

Step-by-step explanation:

You might be interested in
Help please easy points
Tanya [424]

Answer:

y=2x

Step-by-step explanation:

We need to first find the slope. Lets get two points and apply the slope formula.

(1,2) and (2,4)

Rise: 2

Run: 4

Slope: 2

Then, lets use the standard way of showing a linear equation.

y=mx+b

y=2x+0

4 0
2 years ago
Read 2 more answers
2485 pounds of sand are being packed into bags that weigh 45 pounds each.
MaRussiya [10]

Answer:

55 full bags

Step-by-step explanation:

7 0
2 years ago
The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and
natali 33 [55]

Answer:

a)\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{70*100}{200}=35

E_{2} =\frac{80*100}{200}=40

E_{3} =\frac{50*100}{200}=25

E_{4} =\frac{70*70}{200}=24.5

E_{5} =\frac{80*70}{200}=28

E_{6} =\frac{50*70}{200}=17.5

E_{7} =\frac{70*30}{200}=10.5

E_{8} =\frac{80*30}{200}=12

E_{9} =\frac{50*30}{200}=7.5

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

7 0
3 years ago
The length of a screwdriver is 19 centimeters. The handle is 5 centimeters long. What is the length of the top of the screwdrive
ira [324]
19 minus five is 14. 
5 0
3 years ago
Read 2 more answers
Which net represents this solid figure?
mafiozo [28]

Answer:

The 3rd one

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • *Please Help!* (Easy question) 20 POINTS
    7·2 answers
  • How many dry ounces are in a pound?
    5·1 answer
  • Please help I will mark Brainly
    11·1 answer
  • Has 3 quarts of liquid glue and 24 empty glue bottles that each hold 1 cup. Does she have enough glue to fill all of the bottles
    13·1 answer
  • Half-life of Po-210 is 140 days. If the initial mass of the sample is 5
    9·1 answer
  • -2x+5 &lt; 3<br>Someone explain it and solve pls​
    13·1 answer
  • What's the equivalent fraction of 3/7
    12·2 answers
  • I really need help,please!!
    9·1 answer
  • I’m going to continue using up all my points
    10·2 answers
  • A store offers a 30% discount on a coat that originally sold for $120. The coat still does not sell, so the store offers another
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!