1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
3 years ago
5

Find the sum of this series \displaystyle \log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)

+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right)log( 2 1 ​ )+log( 3 2 ​ )+log( 4 3 ​ )+log( 5 4 ​ )+...+log( 99 98 ​ )+log( 100 99 ​ )
Mathematics
1 answer:
Lesechka [4]3 years ago
8 0

Answer:

\log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right) = \log(\frac{1}{100})

Step-by-step explanation:

Given

\log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right)

Required

The sum

Using the laws of logarithm, we have:

\log(a) + \log(b) = \log(ab)

Take the first two terms of the series

\log(\frac{1}{2}) + \log(\frac{2}{3}) = \log(\frac{1}{2} * \frac{2}{3})

\log(\frac{1}{2}) + \log(\frac{2}{3}) = \log(\frac{1}{3})

Include the third term

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) = \log(\frac{1}{3} * \frac{3}{4})

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) = \log(\frac{1}{4})

Include the fourth term

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) + \log(\frac{4}{5}) = \log(\frac{1}{4} *\frac{4}{5})

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) + \log(\frac{4}{5}) = \log(\frac{1}{5})

Notice the following pattern

\log(\frac{1}{2}) + \log(\frac{2}{3}) = \log(\frac{1}{3}) ---------------- n =2

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) = \log(\frac{1}{4}) -------------- n = 3

\log(\frac{1}{2}) + \log(\frac{2}{3})+ \log(\frac{3}{4}) + \log(\frac{4}{5}) = \log(\frac{1}{5}) ----------- n = 4

So the sum of n series is:

\log(\frac{1}{2}) + \log(\frac{2}{3})+ ............ + \log(\frac{n}{n+1}) = \log(\frac{1}{n+1})

So, the sum of the series is:

\log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right)

\log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right) = \log(\frac{1}{99+1})

\log\left(\frac{1}{2}\right)+\log\left(\frac{2}{3}\right)+\log\left(\frac{3}{4}\right)+\log\left(\frac{4}{5}\right)+...+\log\left(\frac{98}{99}\right) +\log\left(\frac{99}{100}\right) = \log(\frac{1}{100})

You might be interested in
Worth 100 points<br><br> whats 2 + 2 + 2 + 2 + 2 ?
Zarrin [17]

Answer:

10

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The _____ _____, f(x) = x, is formed by the composition of a function and its inverse. (2 words)
jonny [76]

Answer:

Identity function    

Step-by-step explanation:

We are given the following in the question:

Let f(x) be a function.

Then, inverse of f(x) can be written as:

f^{-1}(x)

The composition function of the function and the reverse function can be found as:

(f\circf^{-1})(x) = f(f^{-1})(x) = x

which is an identity function.

Thus, the correct answer is

The identity function, f(x) = x, is formed by the composition of a function and its inverse.

8 0
3 years ago
Help plzzzzzzzzzzzzzzzzzzzzz
prohojiy [21]

Answer:

c = {\boxed{\boldsymbol{29}}} km

Step-by-step explanation:

Here's the required formula to find the missing side of triangle by pythagoras theorem :

{\longrightarrow{\pmb{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}}}

  • \purple\star a = 20 km
  • \purple\star b = 21 km
  • \purple\star c = ?

Substituting all the given values in the formula to find the third side of triangle :

\begin{gathered} \quad{\longrightarrow{\sf{{(a)}^{2} + {(b)}^{2} = {(c)}^{2}}}} \\  \\ \quad{\longrightarrow{\sf{{(20)}^{2} + {(21)}^{2} = {(c)}^{2}}}} \\  \\ \quad{\longrightarrow{\sf{(20 \times 20) + (21 \times 21) = {(c)}^{2}}}} \\  \\ \quad{\longrightarrow{\sf{(400) + (441) = {(c)}^{2}}}} \\  \\ \quad{\longrightarrow{\sf{400 + 441 = {(c)}^{2}}}}  \\  \\ \quad{\longrightarrow{\sf{841= {(c)}^{2}}}} \\  \\ \quad{\longrightarrow{\sf{c =  \sqrt{841}}}} \\  \\ \quad{\longrightarrow{\sf{\underline{\underline{\purple{c = 29 \: km}}}}}}\end{gathered}

Hence, the length of missing side of triangle is 29 km.

\rule{300}{2.5}

3 0
2 years ago
The frog jumped 7/8 of a foot on the first jump and 2/3 of a foot on the second
Marina86 [1]
He jumped 1.542 feet
7/8 + 2/3
5 0
3 years ago
Use (&lt;,&gt;,=) to compare 2/3 and 3/4
lina2011 [118]
2/3 < 3/4. Hope that helps
3 0
3 years ago
Other questions:
  • Let point (a,b) be on a unit circle.
    5·1 answer
  • Graph the equation below by plotting the y-intercept and a second point on the line.<br> Y=3x-3
    10·1 answer
  • I am not quite sure how to do these.
    5·1 answer
  • Consider the function represented by the table.
    13·1 answer
  • Can someone please help me understand how to solve this? I can't seem to wrap my head around this concept so if someone could po
    5·1 answer
  • At the age of 18, Albert inherits $100,000 from his grandfather. One bank offers to invest this money at 10% for 5 years. A seco
    14·1 answer
  • What’s the answer???
    12·1 answer
  • QUESTION SHOWN ON PHOTO :)
    8·1 answer
  • This year, Shelley paid $2,363 for season tickets to her favorite baseball team, which is 15%
    13·2 answers
  • Answer Choices<br> A.ABCD<br> B.CDEF<br> C.HGEF<br> D.BGFD
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!