Answer:
0.62% probability that randomly chosen salary exceeds $40,000
Step-by-step explanation:
Problems of normally distributed distributions are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:

What is the probability that randomly chosen salary exceeds $40,000
This is 1 subtracted by the pvalue of Z when X = 40000. So



has a pvalue of 0.9938
1 - 0.9938 = 0.0062
0.62% probability that randomly chosen salary exceeds $40,000
Answer:



Step-by-step explanation:
Given
Billy's Marble = x
Required
Determine a,b and c
a. Charlie's Marble
"5 more" means 5 + or + 5
Since Billy's Marble is represented with x, then Charlie's Marbles will be

b. Danny's Marbles
Having "8 fewer" means we have to subtract 8 from Billy's marble;
Since Billy's Marble is represented with x, then Danny's Marbles will be

c. Eric Marbles
Having "three times as " means we have to multiply Bill's marble by 3;
Since Billy's Marble is represented with x, then Danny's Marbles will be

