
![\sf \left[\begin{array}{cc}\sf 4&\sf 6\\ \sf 5 &\sf 8 \\ \sf 3 &\sf -2\end{array}\right]-\left[\begin{array}{cc}\sf 2&\sf 3\\ \sf 1 &\sf 4 \\ \sf -5&\sf3\end{array}\right]](https://tex.z-dn.net/?f=%5Csf%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%204%26%5Csf%206%5C%5C%20%5Csf%205%20%26%5Csf%208%20%5C%5C%20%5Csf%203%20%26%5Csf%20-2%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%26%5Csf%203%5C%5C%20%5Csf%201%20%26%5Csf%204%20%5C%5C%20%5Csf%20-5%26%5Csf3%5Cend%7Barray%7D%5Cright%5D)
Just substract corresponding terms
![\\ \sf\longmapsto \left[\begin{array}{cc}\sf 2 &\sf 3\\ \sf 4&\sf4\\ \sf 8&\sf -5\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%20%26%5Csf%203%5C%5C%20%5Csf%204%26%5Csf4%5C%5C%20%5Csf%208%26%5Csf%20-5%5Cend%7Barray%7D%5Cright%5D)
Option B
Answer:
Find the minimum or maximum value of the function g (I) = -3x^2 - 6x + 5. Describe the domain and range of the function, and where the function is increasing and decreasing. > -1 all real numbers The function The maximum value is I < 0 The domain is and the range is right of I left -1 is increasing to the of I= and decreasing to the 0 12 :: yo y0 :: 8 :: IS-1 :: -1 :: 0 :: I> 0 :: 1 :: 8 :: < 0 :: left :: all real numbers :: y -8 :: y < 8 :: y8
Step-by-step explanation:
Answer:
x = 181 and y = 97
Step-by-step explanation:
let called the first number is x
the second number would be called y
We are given that:
x + y = 278 (1)
x = y + 84 (2)
Let change x in (2) into (1):
y + 84 + y = 278
2y + 84 = 278
Subtract 84 from both side, we got:
2y + 84 - 84 = 278 - 84
2y + 0 = 194
Divide both side by 2, we got:
2y / 2 = 194 / 2
y = 97
Because y = 97 and x + y = 278 so x would equal:
x + 97 = 278
Subtract 97 from both side, we got:
x + 97 - 97 = 278 - 97
x + 0 = 181
x = 181 and y = 97
Hope this helped :3