Answer:
a) strong negative linear correlation.
b) Weak or no linear correlation.
c) strong positive linear correlation.
Step-by-step explanation:
The correlation coefficient r measures the strength and direction (positive or negative) of two variables. The correlation coefficient r is always between -1 and 1. When the coefficient r is negative then the direction of the correlation is downhill (negative) and when it's positive then it's an uphill correlation (positive). Similarly, as the coefficient is closer to -1 or 1 the correlation is stronger, with zero being a non linear relationship.
Now back to the question:
a) Near -1: as we said before, this means an strong negative (-1) linear correlation.
b) Near 0: weak or no linear correlation (we cannot say if its positive or negative because we don't know it it's near zero from the right (positive numbers) or the left (negative numbers)
c) Near 1: strong positive (close to +1) linear correlation
f(x)=(2x−3)(x+6)(5x+6)f, left parenthesis, x, right parenthesis, equals, left parenthesis, 2, x, minus, 3, right parenthesis, le
bazaltina [42]
Answer:
566
Step-by-step explanation:
I got it right..................
Answer:
75 of additional money
Step-by-step explanation:
5% of 1,500 is 75
and 1,500 plus 75 is 1575
Answer:
m=2 and n=3
Step-by-step explanation:
<u>Step</u> :-
Given ![[ 2 x^{n}y^{2} ]^m = 4 x^6 y^4](https://tex.z-dn.net/?f=%5B%202%20x%5E%7Bn%7Dy%5E%7B2%7D%20%5D%5Em%20%3D%204%20x%5E6%20y%5E4)
using algebraic formula 
now

now equating 'x' powers, we get

....(1)
now

Equating 'y' powers ,we get
2 m=4
m=2
substitute m= 2 in equation (1)
we get
2 n=6
n=3
verification:-
substitute m=2 and n=3 , we get
![[ 2 x^{n}y^{2} ]^m = 4 x^6 y^4](https://tex.z-dn.net/?f=%5B%202%20x%5E%7Bn%7Dy%5E%7B2%7D%20%5D%5Em%20%3D%204%20x%5E6%20y%5E4)


both are equating so m= 2 and n=3
Answer:
to find the missing number, compare both sides of the equation. If the variable terms are the same and the constant terms are different, then the equation has no solutions.
Step-by-step explanation:
to find the missing number, compare both sides of the equation. If the variable terms are the same and the constant terms are different, then the equation has no solutions.