Add 10 then subtract 5 gives: 11, 21, 16, 26, 21
add 10 and subtract 5 gives: 11, 16, 21, 26, 31
The containers must be spheres of radius = 6.2cm
<h3>
How to minimize the surface area for the containers?</h3>
We know that the shape that minimizes the area for a fixed volume is the sphere.
Here, we want to get spheres of a volume of 1 liter. Where:
1 L = 1000 cm³
And remember that the volume of a sphere of radius R is:

Then we must solve:
![V = \frac{4}{3}*3.14*R^3 = 1000cm^3\\\\R =\sqrt[3]{ (1000cm^3*\frac{3}{4*3.14} )} = 6.2cm](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%2A3.14%2AR%5E3%20%3D%201000cm%5E3%5C%5C%5C%5CR%20%3D%5Csqrt%5B3%5D%7B%20%20%281000cm%5E3%2A%5Cfrac%7B3%7D%7B4%2A3.14%7D%20%29%7D%20%3D%206.2cm)
The containers must be spheres of radius = 6.2cm
If you want to learn more about volume:
brainly.com/question/1972490
#SPJ1
Answer:
B)no
Step-by-step explanation:
the correct solution is (3,12)
Given a quadratic equation

1. the first thing we do when we want to compete the square, is write the coefficient of x as 2 times a number.
In our case the coefficient of x is 10, so we write 10 as 2*5
2. then we write +

and -

to the expression:



Answer: