Answer:
1
Step-by-step explanation:
Scientific notation is the way that scientists easily handle very large numbers or very small numbers. For example, instead of writing 0.0000000056, we write 5.6 x 10-9. So, how does this work?
We can think of 5.6 x 10-9 as the product of two numbers: 5.6 (the digit term) and 10-9 (the exponential term).
Here are some examples of scientific notation
Answer:
The midpoint is 
Step-by-step explanation:
we know that
The formula to calculate the midpoint between two points is equal to

we have


substitute


Answer: Lattice parameter, a = (4R)/(√3)
Step-by-step explanation:
The typical arrangement of atoms in a unit cell of BCC is shown in the first attachment.
The second attachment shows how to obtain the value of the diagonal of the base of the unit cell.
If the diagonal of the base of the unit cell = x
(a^2) + (a^2) = (x^2)
x = a(√2)
Then, diagonal across the unit cell (a cube) makes a right angled triangle with one side of the unit cell & the diagonal on the base of the unit cell.
Let the diagonal across the cube be y
Pythagoras theorem,
(a^2) + ((a(√2))^2) = (y^2)
(a^2) + 2(a^2) = (y^2) = 3(a^2)
y = a√3
But the diagonal through the cube = 4R (evident from the image in the first attachment)
y = 4R = a√3
a = (4R)/(√3)
QED!!!
Answer: Susan, sam forgot to flip the signs while dividing a negative number.
The greatest common factor of the two terms is 33a^3.
With the numbers 66 and 99, the greatest common factor is 33. It is the largest number that divides evenly into both.
For the variables, the most that is in common in both is a^3.