Answer:
The binary notation of the integer 234 is 11101010.
Step-by-step explanation:
To convert decimal to binary you must:
- Divide the number by 2.
- Get the integer quotient for the next iteration.
- Get the remainder for the binary digit.
- Repeat the steps until the quotient is equal to 0.
- Write the remainders from bottom to top.
So, to convert the decimal number 234 to binary

The binary notation of the integer 234 is 11101010.
Answer:
Step-by-step explanation:
The question lacks the required diagram. Find the diagram attached below;
According to the first triangle, taking 30° as the reference angle, the opposite side of the triangle will be 5 and the adjacent will be the unknown side "b"
According to SOH, CAH, TOA;
tanθ = opposite/adjacent (using TOA)
Given;
θ = 30°, opposite = 5 and adjacent = b
tan30° = 5/b
b = 5/tan30°
b = 5/(1/√3)
b = 5*√3/1
b = 5√3
According to the 45° triangle, the opposite side of the triangle will be d and the hypotenuse will be 7
Using SOH;
sinθ = opposite/hypotenuse
Given;
θ = 45°, opposite = d and adjacent = 7
sin45° = d/7
d = 7sin45°
d = 7(1/√2)
d = 7/√2
Rationalize 7/√2
= 7/√2*√2/√2
=7√2/2
Hence the value of d is 7√2/2
Answer:
c: v=5000(1.35)
Step-by-step explanation:
3.5 interest in point-slope decimal form is 1.35.
v=5000(1.35) is final answer
The cosine of an angle is the x-coordinate of the point where its terminal ray intersects the unit circle. So, we can draw a line at x=-1/2 and see where it intersects the unit circle. That will tell us possible values of θ/2.
We find that vertical line intersects the unit circle at points where the rays make an angle of ±120° with the positive x-axis. If you consider only positive angles, these angles are 120° = 2π/3 radians, or 240° = 4π/3 radians. Since these are values of θ/2, the corresponding values of θ are double these values.
a) The cosine values repeat every 2π, so the general form of the smallest angle will be
... θ = 2(2π/3 + 2kπ) = 4π/3 + 4kπ
b) Similarly, the values repeat for the larger angle every 2π, so the general form of that is
... θ = 2(4π/3 + 2kπ) = 8π/3 + 4kπ
c) Using these expressions with k=0, 1, 2, we get
... θ = {4π/3, 8π/3, 16π/3, 20π/3, 28π/3, 32π/3}
-4(x-7)=36
-4x+28=36
-4x=8
x=-2