Answer:
slope= 0
Step-by-step explanation:
it's a horizontal line
Answer:
P(A∣D) = 0.667
Step-by-step explanation:
We are given;
P(A) = 3P(B)
P(D|A) = 0.03
P(D|B) = 0.045
Now, we want to find P(A∣D) which is the posterior probability that a computer comes from factory A when given that it is defective.
Using Bayes' Rule and Law of Total Probability, we will get;
P(A∣D) = [P(A) * P(D|A)]/[(P(A) * P(D|A)) + (P(B) * P(D|B))]
Plugging in the relevant values, we have;
P(A∣D) = [3P(B) * 0.03]/[(3P(B) * 0.03) + (P(B) * 0.045)]
P(A∣D) = [P(B)/P(B)] [0.09]/[0.09 + 0.045]
P(B) will cancel out to give;
P(A∣D) = 0.09/0.135
P(A∣D) = 0.667
Answer:
1832 miles
Step-by-step explanation:
First we need to find the angle between the routes of the planes.
If one is N30°W and the other is S45°W, we can find the angle between the routes with the following equation:
30 + angle + 45 = 180
angle = 105°
Then, we need to find the distance travelled by each plane, using the formula:
distance = speed * time
The time is 1.5 hours, so we have that:
distance1 = 800 * 1.5 = 1200 km
distance2 = 750 * 1.5 = 1125 km
Now, to find the distance between the planes, we can use the law of cosines:
distance^2 = 1200^2 + 1125^2 - 2*1200*1125*cos(105)
distance^2 = 3356214.43
distance = 1832 miles
Answer:
64
Step-by-step explanation:
You need to do 4*4*4 to get your answer.
Hope this helps.