Each mole of substance contains 6.02 x <span>1023</span> component parts, in this case water molecules.
If you have 2.3 moles of water you will have 2.3 x 6.02 x <span>1023</span> which is 1.3846 x <span>1024</span> molecules.
Each molecule contains 2 hydrogen atoms, so the total number of hydrogen atoms in 2.3 moles of water will be 2 x 1.3846 x <span>1024</span> = 2.7692 x <span>1024</span>.
Please mark brainliest, thanks :)
Answer:
K₂CO₃
Explanation:
Given parameters:
Number of moles of K = 0.104mol
Number of moles of C = 0.052mol
Number of moles of O = 0.156mol
Method
From the given parameters, to calculate the empirical formula of the elements K, C and O, we reduce the given moles to the simplest fraction.
Empirical formula is the simplest formula of a compound and it differs from the molecular formula which is the actual formula of a compound.
- Divide the given moles through by the smallest which is C, 0.052mol.
- Then approximate values obtained to the nearest whole number of multiply by a factor to give a whole number ratio.
- This is the empirical formula
Solution
Elements K C O
Number of moles 0.104 0.052 0.156
Dividing by the
smallest 0.104/0.052 0.052/0.052 0.156/0.052
2 1 3
The empirical formula is K₂CO₃
Answer:
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)
Explanation:
The balanced reaction between Na2CO3 and HCl is given as;
Na₂CO₃ (aq) + 2 HCl (aq) → 2 NaCl (aq) + CO₂ (g) + H₂O (l)
The next step is o express the species as ions.
The complete ionic equation for the above reaction would be;
2Na⁺(aq) + CO₃²⁻(aq) + 2H⁺(aq) + 2Cl⁻(aq) → Na⁺(aq) + Cl⁻(aq) + CO₂ (g) + H₂O (l)
The next step is to cancel out the spectator ion ions; that is the ions that appear in both the reactant and product side unchanged.
The spectator ions are; Na⁺ and Cl⁻
The net ionic equation is given as;
CO₃²⁻(aq) + 2H⁺(aq) → CO₂ (g) + H₂O (l)
HM, I think the answer would be D. This is just a guess, so please use it if ou want to answer D it's ok :D
The greenhouse effect captures the sun's energy and keeps the earth warm.