Let <em>V</em> be the volume of the tank. The inlet pipe fills the tank at a rate of
<em>V</em> / (5 hours) = 0.2<em>V</em> / hour
and the outlet pipe drains it at a rate of
<em>V</em> / (8 hours) = 0.125<em>V</em> / hour
With both valves open, the net rate of water entering the tank is
(0.2<em>V</em> - 0.125<em>V </em>) / hour = 0.075<em>V</em> / hour
If <em>t</em> is the time it takes for the tank to be full, then
(0.075<em>V</em> ) / hour • <em>t</em> = <em>V</em>
Solve for <em>t</em> :
<em>t</em> = <em>V</em> / ((0.075<em>V</em> ) / hour)
<em>t</em> = 1/0.075 hour
<em>t</em> ≈ 13.333 hours
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point E (9,0)
Point F (0, -10)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>.
- Substitute [DF]:

- Subtract:

- Exponents:

- Add:

- Evaluate:

- Round:

Answer:
X<-50
Step-by-step explanation:
multiply both sides by 2, then you move the constant to the right 10-X>60, then subtract the numbers -X>60-10 and for last you just change the sings so that gives u your answer x<-50
Answer:
A = 12.56 m²
General Formulas and Concepts:
<u>Pre-Alg</u>
- Order of Operations: BPEMDAS
<u>Geometry</u>
- Area of a Circle: A = πr²
- d = 2r
Step-by-step explanation:
<u>Step 1: Define</u>
d = 4 m
<u>Step 2: Find </u><em><u>r</u></em>
- Substitute: 4 = 2r
- Isolate <em>r</em>: 2 = r
- Rewrite: r = 2 m
<u>Step 3: Find Area</u>
- Substitute: A = π(2)²
- Substitute: A = (3.14)(2)²
- Evaluate: A = (3.14)(4)
- Multiply: A = 12.56 m²
Answer:
4096
Step-by-step explanation:
You do the equation 4^6