The area of a triangle is 36 4/5 units squared and the height of the triangle 9 1/5 what is the length of the triangles base
2 answers:
Answer:
Height = 8 units
Step-by-step explanation:
Area of a triangle =
square units
=
square units
Height of the triangle =
units
=
units
Formula to calculate the area of a triangle is,
Area = ![\frac{1}{2}(\text{Base})(\text{Height})](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%28%5Ctext%7BBase%7D%29%28%5Ctext%7BHeight%7D%29)
![\frac{184}{5}= \frac{1}{2}\times (\frac{46}{5})\times (\text{Height})](https://tex.z-dn.net/?f=%5Cfrac%7B184%7D%7B5%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28%5Cfrac%7B46%7D%7B5%7D%29%5Ctimes%20%28%5Ctext%7BHeight%7D%29)
![\frac{184}{5}= (\frac{46}{10})\times (\text{Height})](https://tex.z-dn.net/?f=%5Cfrac%7B184%7D%7B5%7D%3D%20%28%5Cfrac%7B46%7D%7B10%7D%29%5Ctimes%20%28%5Ctext%7BHeight%7D%29)
Height = ![\frac{184}{5}\times \frac{10}{46}](https://tex.z-dn.net/?f=%5Cfrac%7B184%7D%7B5%7D%5Ctimes%20%5Cfrac%7B10%7D%7B46%7D)
= ![\frac{368}{46}](https://tex.z-dn.net/?f=%5Cfrac%7B368%7D%7B46%7D)
= 8 units
Therefore, height of the given triangle is 8 units.
Answer:
Its eight
Step-by-step explanation:
Since you need to do both steps just do them and then you can simplefiy
You might be interested in
Given
![f(x,\ y)=x^2-y^2-2](https://tex.z-dn.net/?f=f%28x%2C%5C%20y%29%3Dx%5E2-y%5E2-2)
subject to the constraint
![x^2+y^2=16](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3D16)
Let
![g(x,\ y)=x^2+y^2](https://tex.z-dn.net/?f=g%28x%2C%5C%20y%29%3Dx%5E2%2By%5E2)
.
The gradient vectors of
![f](https://tex.z-dn.net/?f=f)
and
![g](https://tex.z-dn.net/?f=g)
are:
![\nabla f(x,\ y)=\langle2x,-2y\rangle](https://tex.z-dn.net/?f=%5Cnabla%20f%28x%2C%5C%20y%29%3D%5Clangle2x%2C-2y%5Crangle)
and
![\nabla g(x,\ y)=\langle2x,2y\rangle](https://tex.z-dn.net/?f=%5Cnabla%20g%28x%2C%5C%20y%29%3D%5Clangle2x%2C2y%5Crangle)
By Lagrange's theorem, there is a number
![\lambda](https://tex.z-dn.net/?f=%5Clambda)
, such that
![\langle2x,-2y\rangle=\lambda\langle2x,2y\rangle=\langle2\lambda x,2\lambda y\rangle](https://tex.z-dn.net/?f=%5Clangle2x%2C-2y%5Crangle%3D%5Clambda%5Clangle2x%2C2y%5Crangle%3D%5Clangle2%5Clambda%20x%2C2%5Clambda%20y%5Crangle)
![\lambda=\pm1](https://tex.z-dn.net/?f=%5Clambda%3D%5Cpm1)
It can be seen that
![f(x,\ y)=x^2-y^2-2](https://tex.z-dn.net/?f=f%28x%2C%5C%20y%29%3Dx%5E2-y%5E2-2)
has local extreme values at the given region.
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Oh that’s on safari i just looked it up lol. go check it out. sorry if it’s not there for u. but i didn’t feel like typing that much
I believe the answer would be x = - 7/4
Kevin ran 8 miles rounded to the nearest tenth