Ooh, fun
what I would do is to make it a piecewise function where the absolute value becomse 0
because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up
so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points
we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5
A.

B.
sepearte the integrals
![\int\limits^{-5}_{-4} {x^2+x-12} \, dx = [\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-5}_{-4}=(\frac{-125}{3}+\frac{25}{2}+60)-(\frac{64}{3}+8+48)=\frac{23}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-5%7D_%7B-4%7D%20%7Bx%5E2%2Bx-12%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-5%7D_%7B-4%7D%3D%28%5Cfrac%7B-125%7D%7B3%7D%2B%5Cfrac%7B25%7D%7B2%7D%2B60%29-%28%5Cfrac%7B64%7D%7B3%7D%2B8%2B48%29%3D%5Cfrac%7B23%7D%7B6%7D)
next one
![\int\limits^{-4}_3 {-x^2-x+12} \, dx=-1[\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-4}_{3}=-1((-64/3)+8+48)-(9+(9/2)-36))=\frac{343}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-4%7D_3%20%7B-x%5E2-x%2B12%7D%20%5C%2C%20dx%3D-1%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-4%7D_%7B3%7D%3D-1%28%28-64%2F3%29%2B8%2B48%29-%289%2B%289%2F2%29-36%29%29%3D%5Cfrac%7B343%7D%7B6%7D)
the last one you can do yourself, it is

the sum is

so the area under the curve is
Before we begin, let's identify what kind of angles these are and are they related in any way?
These angles are both acute and they are both corresponding angles.
Corresponding angles are equal to each other, and we can use this fact to our advantage.
Since they are equal to each other, we can set the equations of 1 and 2 equal to each other. Like so,
1 = 2
83 - 2x = 92 - 3x
Now, we can solve for X by isolating it on one side.
83 - 2x = 92 - 3x
Add 3x to each side: (This basically moves the X on the right side to the left.)
83 - 2x + 3x = 92 - 3x + 3x
83 + x = 92
Subtract 83 on each side to isolate the X.
83 + x - 83 = 92 - 83
x = 92 - 83
x = 9
Therefore, X equals 9. To check our work, we can substitute X for 9.
83 - 2(9) = 92 - 3(9)
83 - 18 = 92 - 27
65 = 65 -
TRUE
So to conclude, Angle 1 is 65 degrees, Angle 2 is 65 degrees, and X equals 9.
Hope I could help you out!
If my answer is incorrect, or I provided an answer you were not looking for, please let me know. However, if my answer is explained well and correct, please consider marking my answer as Brainliest! :)
Have a good one.
God bless!
Answer:
Here’s what I got for this worksheet.
Step-by-step explanation:
Answer:
No, 67 and 113 are not multiples of 4,5 and 8
Step-by-step explanation: