1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gregori [183]
3 years ago
6

For the problem find x to the nearest tenth

Mathematics
1 answer:
r-ruslan [8.4K]3 years ago
8 0

Answer:

What

Step-by-step explanation:

You might be interested in
Select all the expressions that show the distance between points A and B.
qwelly [4]

Answer:

0 -1-(-8)

0-1=-1

-1-(-8)

-1+8

=7

7 0
3 years ago
What is the value of x?<br><br> Enter your answer in the box.
valentinak56 [21]

Answer: 39

Step-by-step explanation:

180-(39+102)

180-141

39

6 0
3 years ago
Read 2 more answers
Before finding the surface area of a cylinder, you must convert all dimensions to the same unit of measure. True False
klio [65]

Answer:

true

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Perform the following operations s and prove closure. Show your work.
nadezda [96]

Answer:

1. \frac{x}{x+3}+\frac{x+2}{x+5} = \frac{2x^2+10x+6}{(x+3)(x+5)}\\

2. \frac{x+4}{x^2+5x+6}*\frac{x+3}{x^2-16} = \frac{1}{(x+2)(x-4)}

3. \frac{2}{x^2-9}-\frac{3x}{x^2-5x+6} = \frac{-3x^2-7x-4}{(x+3)(x-3)(x-2)}

4. \frac{x+4}{x^2-5x+6}\div\frac{x^2-16}{x+3} = \frac{1}{(x-2)(x-4)}

Step-by-step explanation:

1. \frac{x}{x+3}+\frac{x+2}{x+5}

Taking LCM of (x+3) and (x+5) which is: (x+3)(x+5)

=\frac{x(x+5)+(x+2)(x+3)}{(x+3)(x+5)}\\=\frac{x^2+5x+(x)(x+3)+2(x+3)}{(x+3)(x+5)} \\=\frac{x^2+5x+x^2+3x+2x+6}{(x+3)(x+5)} \\=\frac{x^2+x^2+5x+3x+2x+6}{(x+3)(x+5)} \\=\frac{2x^2+10x+6}{(x+3)(x+5)}\\

Prove closure: The value of x≠-3 and x≠-5 because if there values are -3 and -5 then the denominator will be zero.

2. \frac{x+4}{x^2+5x+6}*\frac{x+3}{x^2-16}

Factors of x^2-16 = (x)^2 -(4)^2 = (x-4)(x+4)

Factors of x^2+5x+6 = x^2+3x+2x+6 = x(x+3)+2(x+3) =(x+2)(x+3)

Putting factors

=\frac{x+4}{(x+3)(x+2)}*\frac{x+3}{(x-4)(x+4)}\\\\=\frac{1}{(x+2)(x-4)}

Prove closure: The value of x≠-2 and x≠4 because if there values are -2 and 4 then the denominator will be zero.

3. \frac{2}{x^2-9}-\frac{3x}{x^2-5x+6}

Factors of x^2-9 = (x)^2-(3)^2 = (x-3)(x+3)

Factors of x^2-5x+6 = x^2-2x-3x+6 = x(x-2)+3(x-2) =(x-2)(x+3)

Putting factors

\frac{2}{(x+3)(x-3)}-\frac{3x}{(x+3)(x-2)}

Taking LCM of (x-3)(x+3) and (x-2)(x+3) we get (x-3)(x+3)(x-2)

\frac{2(x-2)-3x(x+3)(x-3)}{(x+3)(x-3)(x-2)}

=\frac{2(x-2)-3x(x+3)}{(x+3)(x-3)(x-2)}\\=\frac{2x-4-3x^2-9x}{(x+3)(x-3)(x-2)}\\=\frac{-3x^2-9x+2x-4}{(x+3)(x-3)(x-2)}\\=\frac{-3x^2-7x-4}{(x+3)(x-3)(x-2)}

Prove closure: The value of x≠3 and x≠-3 and x≠2 because if there values are -3,3 and 2 then the denominator will be zero.

4. \frac{x+4}{x^2-5x+6}\div\frac{x^2-16}{x+3}

Factors of x^2-5x+6 = x^2-3x-2x+6 = x(x-3)-2(x-3) = (x-2)(x-3)

Factors of x^2-16 = (x)^2 -(4)^2 = (x-4)(x+4)

\frac{x+4}{(x-2)(x+3)}\div\frac{(x-4)(x+4)}{x+3}

Converting ÷ sign into multiplication we will take reciprocal of the second term

=\frac{x+4}{(x-2)(x+3)}*\frac{x+3}{(x-4)(x+4)}\\=\frac{1}{(x-2)(x-4)}

Prove Closure: The value of x≠2 and x≠4 because if there values are 2 and 4 then the denominator will be zero.

5 0
3 years ago
The missing term in the given sequence 1,2,4,7,11,16,?,29,….. will be?
Rashid [163]
The answer is C
1+1=2
2+2=4
4+3=7
1+4=11
11+5=16
16+6=22
22+7=29.....
3 0
3 years ago
Other questions:
  • How do you multiply 40 7 /16?
    11·2 answers
  • A Write an equivalent equation that does NOT contain decimals.
    6·1 answer
  • Whixh graph shows a plot of the complex number I -2?
    15·1 answer
  • The time for this event for boys in secondary school is known to possess a normal distribution with a mean of 460 seconds and a
    8·1 answer
  • What porcentege is 52 off 262?
    14·1 answer
  • The following data set has a mode of 3, a mean of 10, and a median of 5.5. Which of these three measures gives the best idea of
    8·2 answers
  • Determine if the following is consistent Subscript[x, 1] - 2 Subscript[x, 2] + Subscript[x, 3] = 0 Subscript[ , ] 2Subscript[x,
    10·1 answer
  • 4-3-6x^3-2y^3+3x^3+5+2y^3 combining like terms please check answer before given
    9·1 answer
  • Can some one help me with this problem
    9·1 answer
  • Select the best estimate for the quotient.75.1÷9=
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!