If you know that -2 is a zero of f(x) = x^3 + 7x^2 + 4x - 12, explain how to solve the equation.
First you have to figure out what could make f(x) = 0 to get rid of the cube. I'm going to test the array of data, x = -2, x = -3, and x = -4 because this type of equation probably has more negative values given that if you plug in some values the cubed-values and squared-values will surpass the "-12". Plug this into a calculator.
x^3 + 7x^2 + 4x - 12
f(-2) = -8 + 28 - 8 - 12 = 0
So you know that when x = -2, f(x) = 0. Divide "(x + 2)" from the equation and you will get... x^2 + 5x - 6. Now this is a simple polynomial one that you can figure to be (x + 6) (x - 1) just by looking at it because -6 multiplied by 1 is negative 6 and you see 5 and know that 6 - 1 = 5.
The solution is (x + 6) (x - 1) (x + 2) meaning that when x = -6, 1, or -2, f(x) is 0.
Answer:
180o 2 + 3 = 180o If the above statements are ... Theorem to Find Distance Geometry Geometry DIRECTIONS: Choose or write the correct answer . ... -8 12 units C√12 units D√74 units 13 units -2 -3 -4 A6 units -5-6 B -7 -8 -9 4.
Step-by-step explanation:
Answer: I think it’s not similar becaus of the size.
It’s also a different number so it’s a no.
Step-by-step explanation:
Answer:
Option c is right.
Step-by-step explanation:
Given is a parabola y =x^2
From that transformation is done to get parabola as
y =(0.2x)^2
We find that instead of x here we use 0.2x
i.e. New x = 5 times old x
Hence there is a horizontal expansion of scale factor 5.
We can check with any point also
When y =4, x=2 in the parent graph
But when y =4 , we have x = 10 in the new graph
i.e. there is a horizontal expansion of scale factor 5.