Answer:
C=14
Step-by-step explanation:
To find the minimum value, graph each of the inequalities. After graphing each inequality, test a point and shade the region that satisfies the inequality. Once all inequalities have been shaded, find the region where they all overlap. The region will be bounded by intersection points. Test each of these points into C=x+3y. The least value for C is the minimum.
(14,0) (0,17.5) (3.08,3.64)
C=14+3(0) C=0+3(17.5) C=3.08 + 3(3.64)
C=14 C=52.5 C=14
<h2><u>
Answer:</u></h2>


<em>I hope this helps you</em>
<em>:)</em>
Answer:
Step-by-step explanation:
We have given:
√2x+3 - √x+1 = 1
First of all isolate the square root of the left hand side:
√2x+3 = √x+1 +1
Now take square on both sides.
(√2x+3)^2 = (√x+1 +1)^2
Open the R.H.S by squaring formula.
∴(a+b)^2 = a^2+2ab+b^2
2x+3 = (√x+1)^2 + 2(√x+1)(1)+(1)^2
2x+3 = x+1 +2√x+1 +1
2x+3 = x+2 +2√x+1
Combine the like terms:
2x-x+3-2 = 2√x+1
x+1 = 2√x+1
Take square on both sides
(x+1)^2 = (2√x+1)^2
x²+2x+1 = 4x+4
x²+2x-4x+1-4 = 0
x²-2x-3 = 0
Now solve the quadratic equation:
a = 1 , b= -2 , c = -3
x = -b+/-√b²-4ac/2a
x = -(-2)+/-√(-2)² - 4(1)(-3) / 2(1)
x = 2 +/- √4+12 / 2
x = 2+/- √16/2
x = 2+/- 4 /2
x = 2+4/2 , x = 2-4/2
x = 6/2 , x = -2/2
x = 3 , x = -1
The solutions we get is (3, -1).
Answer:
x²+5x - 150 = 0
Step-by-step explanation:
Let the length be y and width be x
If the length of a swimming pool is 10 more than 2 times the width, then;
y = 2x+10 ...1
Since the Area is 300m²
A = xy
300 = xy .... 2
Substitute 1 into 2
300 = x(2x+10)
300 = 2x²+10x
Rearrange
2x²+10x - 300 = 0
Divide through by 2
x²+5x - 150 = 0
This gives the required quadratic expression