Answer:

Step-by-step explanation:
![\sf x(4+5) = 54\\\\Applying \ distributive \ property\\\\(x*4) + (x*5) = 54\\\\Distributive\ Property\ is:\\\\A(B+C) = (A*B)+(A*C)\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20x%284%2B5%29%20%3D%2054%5C%5C%5C%5CApplying%20%5C%20distributive%20%5C%20property%5C%5C%5C%5C%28x%2A4%29%20%2B%20%28x%2A5%29%20%3D%2054%5C%5C%5C%5CDistributive%5C%20Property%5C%20is%3A%5C%5C%5C%5CA%28B%2BC%29%20%3D%20%28A%2AB%29%2B%28A%2AC%29%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
T=-20
Step-by-step explanation:
first get rid of the 7
1. T/4=-5
then multiply by 4 to isolate T
2. T=-20
Answer:
92.75 cm^2
Step-by-step explanation:
Area of triangle ADC
= (1/2)×4.5×12 = 27
Area of triangle ACB
=(1/2)×12×5 = 30
Find AB using pythagoras theorem on triangle ABC:
AB^2 = 5^2 + 12^2 = 25 + 144
AB^2 = 169
AB = 13cm
Area of triangle AGB
= (1/2)×13×5.5 = 35.75
Total area = sum of the areas of the 3 triangles found above
= 27 + 30 + 35.75 = 92.75 cm^2
Answer:
a) The location of the turning point is approximately
.
b) Roots are approximately
and
.
c) 
Step-by-step explanation:
a) The figure presents the graphic of a parabola, that is, a second order polynomial, with an absolute minimum (vertex). The turning point of the graphic, that is, the point in which behavior of the curve changes, is the vertex. Hence, the location of the turning point is approximately
b) According to the Quadratic Formula, second-order polynomials can have either two real roots or two conjugated complex roots. In this case, we have two real roots. A root corresponds with the point of the curve that passes through x-axis. In this case, roots are approximately
and
.
c)
is the function evaluated at
, that is, the value on y-axis associated with
. Lastly, we conclude that
.