10 1/2 = 21/2
(21/2) / 3
= 21/2 x 1/3
= 21/6
= 3 1/2
answer
3 1/2 pages
4 cupcakes because if you do 12/ 1/.. you do kcf = to 12 x 1/3= 4
your welcome
The answer should be 6 bro
Answer:

Step-by-step explanation:
* Lets explain how to solve the problem
- The rule of expand the binomial is:

∵ The binomial is 
∴ a = 10k , b = -m and n = 5
∴ 
∵ 5C1 = 5
∵ 5C2 = 10
∵ 5C3 = 10
∵ 5C4 = 5
∵ 5C5 = 1
∴ 
∴ 
we'll do the same as before, turning the mixed fractions to improper and do the division, keeping in mind that is simply asking how many times 1⅕ goes into 8⅔.
![\bf \stackrel{mixed}{8\frac{2}{3}}\implies \cfrac{8\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{26}{3}}\\\\\\\stackrel{mixed}{1\frac{1}{5}}\implies \cfrac{1\cdot 5+1}{5}\implies \stackrel{improper}{\cfrac{6}{5}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\\cfrac{26}{3}\div \cfrac{6}{5}\implies \cfrac{26}{3}\cdot \cfrac{5}{6}\implies \cfrac{130}{18}\implies \cfrac{126+4}{18}\implies \cfrac{126}{18}+\cfrac{4}{18}\\\\\\\boxed{7+\cfrac{4}{18}}\implies 7\frac{4}{18}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cstackrel%7Bmixed%7D%7B8%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B8%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B26%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%205%2B1%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B6%7D%7B5%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%5Ccfrac%7B26%7D%7B3%7D%5Cdiv%20%5Ccfrac%7B6%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B26%7D%7B3%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B130%7D%7B18%7D%5Cimplies%20%5Ccfrac%7B126%2B4%7D%7B18%7D%5Cimplies%20%5Ccfrac%7B126%7D%7B18%7D%2B%5Ccfrac%7B4%7D%7B18%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B7%2B%5Ccfrac%7B4%7D%7B18%7D%7D%5Cimplies%207%5Cfrac%7B4%7D%7B18%7D%20)