1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
5

Find the two intersection points

Mathematics
1 answer:
bogdanovich [222]3 years ago
6 0

Answer:

Our two intersection points are:

\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)

Step-by-step explanation:

We want to find where the two graphs given by the equations:

\displaystyle (x+1)^2+(y+2)^2 = 16\text{ and } 3x+4y=1

Intersect.

When they intersect, their <em>x-</em> and <em>y-</em>values are equivalent. So, we can solve one equation for <em>y</em> and substitute it into the other and solve for <em>x</em>.

Since the linear equation is easier to solve, solve it for <em>y: </em>

<em />\displaystyle y = -\frac{3}{4} x + \frac{1}{4}<em />

<em />

Substitute this into the first equation:

\displaystyle (x+1)^2 + \left(\left(-\frac{3}{4}x + \frac{1}{4}\right) +2\right)^2 = 16

Simplify:

\displaystyle (x+1)^2 + \left(-\frac{3}{4} x  + \frac{9}{4}\right)^2 = 16

Square. We can use the perfect square trinomial pattern:

\displaystyle \underbrace{(x^2 + 2x+1)}_{(a+b)^2=a^2+2ab+b^2} + \underbrace{\left(\frac{9}{16}x^2-\frac{27}{8}x+\frac{81}{16}\right)}_{(a+b)^2=a^2+2ab+b^2} = 16

Multiply both sides by 16:

(16x^2+32x+16)+(9x^2-54x+81) = 256

Combine like terms:

25x^2+-22x+97=256

Isolate the equation:

\displaystyle 25x^2 - 22x -159=0

We can use the quadratic formula:

\displaystyle x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

In this case, <em>a</em> = 25, <em>b</em> = -22, and <em>c</em> = -159. Substitute:

\displaystyle x = \frac{-(-22)\pm\sqrt{(-22)^2-4(25)(-159)}}{2(25)}

Evaluate:

\displaystyle \begin{aligned} x &= \frac{22\pm\sqrt{16384}}{50} \\ \\ &= \frac{22\pm 128}{50}\\ \\ &=\frac{11\pm 64}{25}\end{aligned}

Hence, our two solutions are:

\displaystyle x_1 = \frac{11+64}{25} = 3\text{ and } x_2 = \frac{11-64}{25} =-\frac{53}{25}

We have our two <em>x-</em>coordinates.

To find the <em>y-</em>coordinates, we can simply substitute it into the linear equation and evaluate. Thus:

\displaystyle y_1 = -\frac{3}{4}(3)+\frac{1}{4} = -2

And:

\displaystyle y _2 = -\frac{3}{4}\left(-\frac{53}{25}\right) +\frac{1}{4} = \frac{46}{25}

Thus, our two intersection points are:

\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)

You might be interested in
if a sprinkler waters 1/14 of a lawn in 1/2 an hour, how much time it will take to water the entire lawn
arlik [135]
1/14 in 30 mins
30 mins x 14=420 mins
420 mins in hours =7 hours
3 0
3 years ago
What is the slope and y-intercept of the graph?<br><br><br><br> Slope: <br><br><br> y-intercept:
mr Goodwill [35]
Y = 0 + 2

Since it is a horizontal line, the slope is m = 0.

For the y-intercept, the line passes through 2 so therefore, the y-intercept is 2 positive.
6 0
3 years ago
Read 2 more answers
All vectors are in Rn. Check the true statements below:
Oduvanchick [21]

Answer:

A), B) and D) are true

Step-by-step explanation:

A) We can prove it as follows:

Proy_{cv}y=\frac{(y\cdot cv)}{||cv||^2}cv=\frac{c(y\cdot v)}{c^2||v||^2}cv=\frac{(y\cdot v)}{||v||^2}v=Proy_{v}y

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that ||Ax||=\sqrt{(A_1 x)^2+\cdots (A_n x)^2}. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then ||Ax||=\sqrt{(x_1)^2+\cdots (x_n)^2}=||x||.

C) Consider S=\{(0,2),(2,0)\}\subseteq \mathbb{R}^2. This set is orthogonal because (0,2)\cdot(2,0)=0(2)+2(0)=0, but S is not orthonormal because the norm of (0,2) is 2≠1.

D) Let A be an orthogonal matrix in \mathbb{R}^n. Then the columns of A form an orthonormal set. We have that A^{-1}=A^t. To see this, note than the component b_{ij} of the product A^t A is the dot product of the i-th row of A^t and the jth row of A. But the i-th row of A^t is equal to the i-th column of A. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then A^t A=I    

E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.

In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set \{u_1,u_2\cdots u_p\} and suppose that there are coefficients a_i such that a_1u_1+a_2u_2\cdots a_nu_n=0. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then a_i||u_i||=0 then a_i=0.  

5 0
4 years ago
Convert 12 feet by 19 feet
lidiya [134]
Area: 120 ft. Quantity: 1<span />
8 0
4 years ago
Read 2 more answers
Find the center and the radius of the circle with the equation x^2-4x+y^2-12y+31=0
ivanzaharov [21]
<h2>C: Center: (2, 6)</h2><h2>Radius: 3</h2>

<em />

5 0
3 years ago
Other questions:
  • Help please!! I’ll give brainliest.....
    7·2 answers
  • What is the measure of the missing angle?!
    14·1 answer
  • Find x.<br><br><br><br> Question 1 options:<br><br> 6<br><br><br> 3<br><br><br> 9<br><br><br> 12
    15·1 answer
  • Use rounding or compatible numbers to estimate the sum 271 + 425
    9·1 answer
  • What’s the value of x?
    7·1 answer
  • C (x) = 0.05x+9.25<br> What is the total rental cost if Jose drove 40 miles?<br> V dollars<br> ?
    15·1 answer
  • PLEASE HELP???!!!!!
    13·2 answers
  • Linear or non linear?<br><br> Y=2x(the power of 2) +X+4
    8·1 answer
  • I’ll give the brainliest whoever helps me
    8·1 answer
  • I'll give brainliest and points to whomever answers these two questions, thank you so much in advance!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!