<h3>Answer: 7366.96 dollars</h3>
========================================================
Use the compound interest formula:
A = P(1+r/n)^(n*t)
where in this case,
A = 12000 = amount after t years
P = unknown = deposited amount we want to solve for
r = 0.05 = the decimal form of 5% interest
n = 1 = refers to the compounding frequency (annual)
t = 10 = number of years
-------
Plug all these values into the equation, then solve for P
A = P(1+r/n)^(n*t)
12000 = P(1+0.05/1)^(1*10)
12000 = P(1.05)^(10)
12000 = P(1.62889462677744)
12000 = 1.62889462677744P
1.62889462677744P = 12000
P = 12000/1.62889462677744
P = 7366.95904248911
P = 7366.96
Answer:
x = 15
Step-by-step explanation:
given that y varies directly with x
mathematically we can express this as
y = k x , where k is a constant
step 1: find k
given x = 3 and y = 21
y = k x
21 = k (3)
k = 7
hence the equation becomes
y = 7 x
when y = 105,
105 = 7x
x = 105 / 7 = 15
1.
, then
and triangles ADC and ACB are similar by AAA theorem.
2. The ratio of the corresponding sides of similar triangles is constant, so
.
3. Knowing lengths you could state that
.
4. This ratio is equivalent to
.
5.
, then
and triangles BDC and BCA are similar by AAA theorem.
6. The ratio of the corresponding sides of similar triangles is constant, so
.
7. Knowing lengths you could state that
.
8. This ratio is equivalent to
.
9. Now add results of parts 4 and 8:
.
10. c is common factor, then:
.
11. Since
you have
.
Answer:



Step-by-step explanation:
Number of Men, n(M)=24
Number of Women, n(W)=3
Total Sample, n(S)=24+3=27
Since you cannot appoint the same person twice, the probabilities are <u>without replacement.</u>
(a)Probability that both appointees are men.

(b)Probability that one man and one woman are appointed.
To find the probability that one man and one woman are appointed, this could happen in two ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
P(One man and one woman are appointed)

(c)Probability that at least one woman is appointed.
The probability that at least one woman is appointed can occur in three ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
- Two women are appointed
P(at least one woman is appointed)

In Part B, 
Therefore:

Answer:
Jo's Number is 20.
Step-by-step explanation:
4 - ( 9 x ? ) = 176.
9 x 20 = 180.
9 x 20 = 180, then subtract 180 by 4.
180 - 4 = 176.
Therefore, Jo's number is 20.