Answer:
a) 38.3% probability that an 18-year-old man selected at random is between 68 and 70 inches tall.
b) 95.44% probability that the mean height x is between 68 and 70 inches.
Step-by-step explanation:
To solve this question, it is important to know the normal probability distribution and the Central Limit Theorem.
Normal probability distribution
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a random variable X, with mean
and standard deviation
, a large sample size can be approximated to a normal distribution with mean
and standard deviation
.
In this problem, we have that:

(a) What is the probability that an 18-year-old man selected at random is between 68 and 70 inches tall?
This is the pvalue of Z when X = 70 subtracted by the pvalue of Z when X = 68. So
X = 70



has a pvalue of 0.6915.
X = 68



has a pvalue of 0.3085.
So there is a 0.6915 - 0.3085 = 0.383 = 38.3% probability that an 18-year-old man selected at random is between 68 and 70 inches tall.
(b) If a random sample of sixteen 18-year-old men is selected, what is the probability that the mean height x is between 68 and 70 inches?
Now we use the Central Limit Theorem, with 
The probability is also the pvalue of Z when X = 70 subtracted by the pvalue of Z when X = 68, but with s as the standard deviation. So
X = 70



has a pvalue of 0.9772.
X = 68



has a pvalue of 0.0228.
So there is a 0.9772 - 0.0228 = 0.9544 = 95.44% probability that the mean height x is between 68 and 70 inches.