Answer:
identical atom in which an electron moves from the first to the third shell.
Atoms may occupy different energy states. The energy states are discrete, i.e. they occur at specific values only. Therefore an atom can only move to a new energy level if it absorbs or emits an amount of energy that exactly corresponds to the difference between two energy levels.
The lowest possible energy level that the atom can occupy is called the ground state. This is the energy state that would be considered normal for the atom.
An excited state is an energy level of an atom, ion, or molecule in which an electron is at a higher energy level than its ground state.
An electron is normally in its ground state, the lowest energy state available. After absorbing energy, it may jump from the ground state to a higher energy level, called an excited state.
<u>Answer:</u> The given sample of water is not safe for drinking.
<u>Explanation:</u>
We are given:
Concentration of fluorine in water recommended = 4.00 ppm
ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.
To calculate the ppm of fluorine in water, we use the equation:

Both the masses are in grams.
We are given:
Mass of fluorine =
(Conversion factor: 1 g = 1000 mg)
Mass of water = 5.00 g
Putting values in above equation, we get:

As, the calculated concentration is greater than the recommended concentration. So, the given sample of water is not safe for drinking.
Hence, the given sample of water is not safe for drinking.
Answer:
Option C = 30 j
Explanation:
Given data:
mass of snowboard = 5 Kg
Initial speed = 2 m/s
final speed = 4 m/s
work done = ΔE= ?
ΔE= change in kinetic energy
Solution:
Formula:
K.E (initial) = 1/2 × mv²
K.E (initial) = 1/2 × 5 Kg . (2m/s)²
K.E (initial) = 1/2 × 20 Kg.m²/s²
K.E (initial) = 10 Kg.m²/s² or 10 J
Kg.m²/s² = J
K.E (finial) = 1/2 × mv²
K.E (finial) = 1/2 × 5 Kg . (4m/s)²
K.E (finial) = 1/2 × 5 Kg . 16 m²/s²
K.E (finial) = 1/2 × 80 Kg.m²/s²
K.E (finial) = 40 Kg.m²/s² or 40 J
work done = ΔE = K.E (finial) - K.E (initial)
work done = ΔE = 40 J - 10 J
work done = ΔE = 30 J
Hey there!:
Molarity of NaOH = 6 M or 6 mol/L
Volume of NaOH = 40 mL
Therefore , number of moles of NaOH:
40 mL =( 6 mol / 1000 mL)*40=
6/ 1000 * 40 => 0.24 moles of NaOH
Hope this helps!
I don't know which ones r, could u add options, maybe?