The graph that represents function h is the graph in; Option C
<h3>How to Interpret Graph Transformations?</h3>
The parent function is; f(x) = tan (x)
The transformed function is; h(x) = -tan(¹/₂x)
Now, from general tangent function we know that; y = tan(Bx)
Thus, period = π/(¹/₂)
From the given transformation that produced the h(x) function and when we look at the given graphs, the one that represents the function h is Option C.
Read more about Graph Transformations at; brainly.com/question/4289712
#SPJ1
The solution of the linear equations will be ( -2, 4).
<h3>What is an equation?</h3>
It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
Given equations are:-
Solving the equations by elimination method:-
2x +3y = 8
3x+y= -2
Multiply the second equation by 3 and subtract from the first equation.
2x +3y = 8
-9x -3y = 6
----------------
-7x = 14
x = -2
Out of the value of x in any one equation, we will get the value of y.
3x+y= -2
3 ( -2) + y = -2
-6 + y = -2
y = 4
The graph of the equations is also attached with the answer below.
Therefore the solution of the linear equations will be ( -2, 4).
The complete question is given below:-
Exploring Systems of Linear Equations 2x +3y =8 and 3x+y= -2. Find the value of x and y and draw a graph for the system of linear equations.
To know more about equations follow
brainly.com/question/2972832
#SPJ1
Answer:
The answer is option A
Step-by-step explanation:
Reflection in the y axis is
(x , y) → ( - x , y)
The coordinates of A are ( 2, -5)
When it's reflected in the y axis it becomes
( - 2 , - 5)
Hope this helps you
Multiply 2 by 10, divide the answer by 5, and add 3 to the final answer
<em>Answer:</em>
<h2>
<em>x=</em><em>6</em><em>√</em><em>2</em></h2>
<em>please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em> for</em><em> full</em><em> solution</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>it</em><em> helps</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em>