Answer:
Step-by-step explanation:
Hello!
The variable of interest is the readings on thermometers. This variable is normally distributed with mean μ= 0 degrees C and standard deviation σ= 1.00 degrees C.
The objective is to find the readings that are in the top 3.3% of the distribution and the lowest 3.3% of the distribution.
Symbolically:
The lower value P(X≤a)=0.033
Top value P(X≥b)=0.033
(see attachment)
Lower value:
The accumulated probability until "a" is 0.03, since the variable has a normal distribution, to reach the value of temperature that has the lowest 3.3%, you have to work under the standard normal distribution.
First we look the Z value corresponding to 0.033 of probability:
Z= -1.838
Now you reverste the standardization using the formula Z= (a-μ)/δ
a= (Z*δ)+μ
a= (-1.838*1)+0
a= -1.838
Top value:
P(X≥b)=0.033
This value has 0.033 of the distribution above it then 1 - 0.033= 0.967
is below it.
You can rewrite the expression as:
P(X≤b)=0.967
Now you have to look the value of Z that corresponds to 0.967 of accumulated probability:
b= (Z*δ)+μ
b= (1.838*1)+0
b= 1.838
The cutoff values that separates rejected thermometers from the others are -1.838 and 1.838 degrees C.
I hope it helps!
Answer:
x=5.4
Step-by-step explanation:
x/3+5=6.8
-5 -5
__________
x/3= 1.8
*3
________
x= 5.4
To find the formula to find radius, solve for r using the formula for circumference.
to solve:
1. divide each side by 2

2. you get
r = c/2
Answer:
x = 24
Step-by-step explanation:
10(x+12)=15x (Given)
10x + 120 = 15x (Distributive property of equality)
-5x = -120 (Subtraction property of equality)
x = 24 (Division property of equality)