1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
3 years ago
13

You did 550 J of work lifting a 220 N backpack. How high did you lift the backpack?

Physics
2 answers:
nevsk [136]3 years ago
8 0
In total there is 110N that you would be lifting from the Backpack
Temka [501]3 years ago
5 0

Answer:

0.255 meters

Explanation:

cause formula to calculate work done against gravity is mgh where m refers mass g refers acceleration due to gravity and h refers height

You might be interested in
The energy stored in oil come from the sun. Describe how energy from the sun became stored in oil
nirvana33 [79]

Crude oil has parts of decomposed dinosaurs and plants from millions of years ago. When the sun gave energy to the plants for their growth, the dinasours ate them which is now is stored in the oil today. So the sun gave energy to plants, dinosaurs ate them, pasted away and decomposed, then we drill and use it as oil.  

4 0
3 years ago
Read 2 more answers
The auto in the sketch moves forward as the brakes are applied. A bystander says that during the interval of braking, the auto's
Ivan

Answer:

The statement is true: velocity and acceleration have opposite directions in the interval of braking.

Explanation:

Let's say we have a velocity v>0.

The acceleration a is the rate of change of the velocity v. This means that if v is <em>increasing during</em> time, then a must be positive. But if v is <em>decreasing over</em> time, then a will be negative (even though the velocity is positive).

Mathematically:

a=\frac{dv}{dt}

v decreases ⇒\frac{dv}{dt}

⇒a.

Example:

v(t)=e^{-t}>0 \\\\\frac{dv}{dt}=-te^{-t}

3 0
4 years ago
What type of energy is thermal energy?
BigorU [14]
Thermal energy is an example of kinetic energy , due to motion of particles .
5 0
4 years ago
Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.
olganol [36]

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

U_{g,1} + K_{x,1} + K_{y,1} =  U_{g,2} + K_{x,2} + K_{y,2}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{x,1}, K_{x,2} - Initial and final horizontal translational kinetic energy, measured in joules.

K_{y,1}, K_{y,2} - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})

y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}

Where:

y_{1}. y_{2} - Initial and final height of the arrow, measured in meters.

v_{y,1}, v_{y,2} - Initial and final vertical speed of the arrow, measured in meters.

g - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

v_{y,1} = v_{1}\cdot \sin \theta

Where:

v_{1} - Magnitude of the initial velocity, measured in meters per second.

\theta - Initial angle, measured in sexagesimal degrees.

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the initial vertical speed is:

v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}

v_{y,1} \approx 33.352\,\frac{m}{s}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} \approx 33.352\,\frac{m}{s} and v_{y,2} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{2} - y_{1} = 56.712\,m

Second arrow

U_{g,1} + K_{y,1} =  U_{g,3} + K_{y,3}

Where:

U_{g,1}, U_{g,3} - Initial and final gravitational potential energy, measured in joules.

K_{y,1}, K_{y,3} - Initial and final vertical translational kinetic energy, measured in joules.

m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})

y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} = 82\,\frac{m}{s} and v_{y,3} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{3} - y_{1} = 342.816\,m

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

E = U + K_{x}

The expression is now expanded:

E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}

Where v_{x} is the horizontal speed of the arrow, measured in meters per second.

v_{x} = v_{1}\cdot \cos \theta

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the horizontal speed is:

v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}

v_{x} \approx 74.911\,\frac{m}{s}

If m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{max} = 56.712\,m and v_{x} \approx 74.911\,\frac{m}{s}, the total mechanical energy is:

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}

E = 201.720\,J

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

E = m\cdot g \cdot y_{max}

m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}} and y_{max} = 342.816\,m

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)

E = 201.720\,J

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

7 0
4 years ago
Please someone help!
Zanzabum

Answer:

pray wold rapidly overpopulate, leading to a shortage of food.

Explanation:

7 0
3 years ago
Other questions:
  • Define mechanical energy useing the example of the skateboarder on the half-pipe explain how kinetic and potential energy relate
    11·1 answer
  • Westinghouse and Edison fought what was known as the war of the currents. Eventually, Westinghouse triumped using Alternating Cu
    7·2 answers
  • The distance from the earth to a star that has identical apparent and absolute magnitudes is ____ .
    10·1 answer
  • when we turn on a light switch or use the microwave, we use electricity. what are common sources or our electricity?
    14·1 answer
  • If an electronic circuit experiences a loss of 3 decibels with an input power of 6 watts, what would its output power be, to the
    9·2 answers
  • How does a branching tree diagram divide organism into groups
    15·2 answers
  • How the relative motion and relative position of the Sun, Earth and Moon affect the seasons, phases of the moon and eclipses?
    9·1 answer
  • The big bang theory has finally answered one of the biggest questions of science—the origin of the universe.
    13·1 answer
  • Which term describes a long-term weather pattern?<br> air mass<br> climate<br> humidity<br> front
    14·2 answers
  • A baseball is thrown with an initial velocity of 45.4 m/s at an angle of 31.2 ∘ .
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!