<span>The flower width data were collected at about the same time
every day. </span>
According to the research, the responder made with the same
query as this question it is:
<span><span>
1.
</span>The flower width data were collected at about
the same time every day. </span>
Why this choice because, the study is delving into the
effects of morning temperatures on flower width hence, if the scientists
collect flower at the same time –hour or minutes everyday during the period of
the study the variable of time is not allotted from sunrise period to high noon
since it defines time as morning, the variant of time is only inapt.
What’s the question, but your a k pop stan hi
B. Barometer is used to measure atmospheric pressure.
Answer:
15,000 m
Explanation:

speed = 50 m/s
time = 5 minutes × 60
= 300 seconds
substitute the values into the formula




Answer:
A) U₀ = ϵ₀AV²/2d
B) U₁ = (ϵ₀AV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
C) U₂ = (kϵ₀AV²)/2d
Explanation:
A) The energy stored in a capacitor is given by (1/2) (CV²)
Energy in the capacitor initially
U₀ = CV²/2
V = voltage across the plates of the capacitor
C = capacitance of the capacitor
But the capacitance of a capacitor depends on the geometry of the capacitor is given by
C = ϵA/d
ϵ = Absolute permissivity of the dielectric material
ϵ = kϵ₀
where k = dielectric constant
ϵ₀ = permissivity of free space/air/vacuum
A = Cross sectional Area of the capacitor
d = separation between the capacitor
If air/vacuum/free space are the dielectric constants,
So, k = 1 and ϵ = ϵ₀
U₀ = CV²/2
Substituting for C
U₀ = ϵ₀AV²/2d
B) Now, for U₁, the new distance between plates, d₁ = 3d
U₁ = ϵ₀AV²/2d₁
U₁ = ϵ₀AV²/(2(3d))
U₁ = (ϵ₀AV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
C) U₂ = CV²/2
Substituting for C
U₂ = ϵAV²/2d
The dielectric material has a dielectric constant of k
ϵ = kϵ₀
U₂ = (kϵ₀AV²)/2d