1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
10

Help, Help, Please

Mathematics
2 answers:
Lesechka [4]3 years ago
8 0

Answer:

θ = \frac{\pi }{3} (60° )

Step-by-step explanation:

Using the identity

sin²x + cos²x = 1 ⇒ sin²x = 1 - cos²x

Given

cos²θ - sin²θ = 2 - 5cosθ

cos²θ - (1 - cos²θ) = 2 - 5cosθ

cos²θ - 1 + cos²θ = 2 - 5cosθ

2cos²θ - 1 = 2 - 5cosθ ( subtract 2 - 5cosθ from both sides )

2cos²θ + 5cosθ - 3 = 0 ← in standard form

(cosθ + 3)(2cosθ - 1) = 0 ← in factored form

Equate each factor to zero and solve for θ

cosθ + 3 = 0

cosθ = - 3 ← not possible as - 1 ≤ cosθ  ≤ 1

2cosθ - 1 = 0

cosθ = \frac{1}{2} , so

θ = cos^{-1} (\frac{1}{2} ) = \frac{\pi }{3} ( or 60° )

pishuonlain [190]3 years ago
8 0

Answer:

\huge  \boxed{  \boxed{\blue{ { \theta = 60}^{ \circ} }}}

Step-by-step explanation:

<h3>to understand this</h3><h3>you need to know about:</h3>
  • trigonometry
  • PEMDAS
<h3>let's solve:</h3>
  1. \sf \: rewrite \:  \sin ^{2} ( \theta) \: as \: 1 -  \cos ^{2} ( \theta)  :  \\  \sf \implies \:  \cos ^{2} ( \theta)  - (1 -  \cos ^{2} ( \theta)) = 2 - 5 \cos( \theta)
  2. \sf \: remove \: parentheses \: and \: change \: its \: sign  :  \\  \sf \implies \:  \cos ^{2} ( \theta)   - 1  +   \cos ^{2} ( \theta)) = 2 - 5 \cos( \theta)
  3. \sf \: add  :  \\  \sf \implies \:  2\cos ^{2} ( \theta)   - 1  = 2 - 5 \cos( \theta)
  4. \sf \:  move \: left \: hand \: sides \: expression \: to \: right \: hand \: sides \:  :  \\  \sf \implies \:  2\cos ^{2} ( \theta)  + 5 \cos( \theta)   - 1 -2  = 0
  5. \sf \: rewrite \:  5\cos( \theta)  \: as \: 6 \cos( \theta) -  \cos( \theta)  :  \\  \sf \implies \:  2\cos ^{2} ( \theta)  + 6 \cos( \theta)    -  \cos( \theta) - 3  = 0
  6. \sf \:factor \: out \: 2 \cos( \theta)  \: and \:  - 1  :  \\  \sf \implies \:  2\cos  ( \theta)( \cos( \theta)   + 3 ) -1(  \cos( \theta)  +  3)  = 0
  7. \sf \: group:  \\  \sf \implies \:  (2\cos( \theta)  - 1) ( \cos( \theta)   + 3 )   = 0
  8. \sf \: rewrite \: as \: two \: seperate \: equation:  \\  \sf \implies \:   \begin{cases}2\cos( \theta)  - 1   = 0\\  \cos( \theta)   + 3 = 0   \end{cases}
  9. \sf add \: 1 \: to  \: the\: first \: equation \: and \: substract \: 3 \: from \: the \: second \: equation:  \\  \sf \implies \:   \begin{cases}2\cos( \theta)     = 1\\  \cos( \theta)    =  - 3 \end{cases}

\sf the \: second \: eqution \: is \: false \: \\ \sf because \: - 1  \leqslant  \cos( \theta)  \leqslant 1 \:  \\  \sf but \: we \: can \: still \: work \: with \: the \: second \: equation

  1. \sf substract \: both \: sides \: by \: 2 :  \\   \implies\frac{ 2\cos( \theta) }{2}  =  \frac{1}{2}  \\   \implies\cos( \theta)  =  \frac{1}{2}  \\   \therefore \:  \theta \:  =  {60}^{ \circ}

You might be interested in
Malik grills a steak 45 minutes longer than he grills a serving of fish. The fish takes twice as long as the asparagus to grill.
stellarik [79]

Vasellasar26,

Penso che tu parli italiano, quindi ecco la risposta alla domanda in italiano. Malik griglia una bistecca 45 minuti in più rispetto a u.na porzione di pesce. Il pesce impiega il doppio del tempo per grigliare gli asparagi. Malik griglia i pomodori tagliati a metà per 3 minuti, che è 3 minuti in più rispetto a quando griglia gli asparagi. 3 33 Questa domanda è composta da 3 parti. Assicurati di completare tutte le parti. A Indicazioni: digita la tua risposta nella casella. Scrivi un'espressione che rappresenti il ​​tempo durante il quale Malik griglia la bistecca se gli asparagi grigliano x minuti.

3 0
3 years ago
*****50 POINTSSSS*****
defon

Answer:

<h3>Given</h3>
  • m∠REG = 78°
  • mAR = 46°
  • ER ≅ GA
<h3>Solution</h3>
  • m∠GAR = 180° - m∠REG = 180° - 78° = 102° (supplementary angles sum to 180°)
  • m∠TAR = 1/2mAR = 1/2(46°) = 23°   (tangent chord angle is half the size of intercepted arc)
  • m∠GAN = 180° - (m∠TAR + m∠GAR) = 180° - (23° + 102°) = 55° (straight angle is 180°)
  • mAG = 2m∠GAN = 2(55°) = 110°
  • mRE = mAG = 110° (as ER ≅ GA)
  • mGE = 360° - (mAG + mAR + mRE) = 360° - (110° + 46° + 110°) = 94° (full circle is 360°)
6 0
3 years ago
What is the distance between point A and point B to the nearest tenth?
Lyrx [107]
What is the number line i'm sorry but i can help without a number line that this question is based off of.
5 0
3 years ago
Urgent! <br><br> 1 1/6 - 3/6 =?
Mnenie [13.5K]

Answer:

1 4/6

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
I'd appreciate your guys' help! :)
butalik [34]

Point slope form is :

8+12 = m(9-4)

8+12= 9m -4m

20= 5m

20/5= 5m/5

m= 4

Slope form

8= 4(9) +b

8= 36+b

-28=b

Y= 4x -28

8 0
3 years ago
Other questions:
  • Original Price Percent of Discount original $112 percent discount 32% sale price ?
    14·1 answer
  • At the Tucson Zoo, Jason spends $6.00 to enter the zoo and $2.00 per animal to feed them. Meanwhile, at the Phoenix Zoo, Kim spe
    11·1 answer
  • Rx+h=sx-k solve for x
    6·1 answer
  • PLZ HELP ASAP SOLVE SIMMILAR TRIANGLES
    11·1 answer
  • Jorge is building a table out of boards that are 3.75 inches wide. He wants the table to be at least 36 inches wide. What is the
    8·1 answer
  • Eight friends are sharing 3 pizzas. The pizzas are the same size, and each person will eat the same amount. What fraction tells
    12·1 answer
  • Given the equation find f=4<br><br> F(x)=x+1
    5·1 answer
  • amal drew the function below. Which explains whether or not his function is linear? On a coordinate plane, a line with negative
    7·1 answer
  • Equation unknown Ms. Owens has some butterflies 7 of them fly away Now she has 12 butterflies left How many butterflies did she
    6·1 answer
  • A music store bought a CD set at a cost of $20. When the store sold the CD set, the percent markup was 35%. Find the selling pri
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!