A firm current ratio is 1. 0 and its quick ratio is 1. 0. If current liabilities are 12300 then its inventories will be 12300
Inventory is the accounting of items, component parts and raw materials that a company either uses in production or sells
The quick and current ratios are liquidity ratios that help investors and analysts gauge a company's ability to meet its short-term obligations. The current ratio divides current assets by current liabilities. The quick ratio only considers highly-liquid assets or cash equivalents as part of current assets.
current ratio = current assets / current liabilities
current assets = current ratio * current liabilities
= 1 * 12300 = 12300
since , inventory is a current asset for accounting purpose , hence inventories will be 12300
To learn more about current ratios
brainly.com/question/19579866?referrer=searchResults
#SPJ4

The equivalent gravitational force is ~

We know that ~

where,
= mass of 1st object = 500 kg
= mass of 2nd object = 20kg
- G = gravitational constant =

- r = distance between the objects = 2.12 m
Let's calculate the force ~
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.
Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.