1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
3 years ago
13

Doug is driving a golf ball off the tee. His downswing takes 0.50sec from the top of the swing until ball impact. At the top of

the swing, the club's angular velocity is zero; at the instant of ball impact, the club's angular velocity is 30rad/s. The swing moment of inertia of the club about the grip is 0.220kg*m^2. What average torque does Doug exert on the golf club during the downswing?
A. 13.2
B. 26.4
C. 64.6
D. 106.8
Physics
1 answer:
Dmitry [639]3 years ago
6 0
D.eeeeeeezzzzzzzz nuuuuutttttssss!
You might be interested in
A large power plant heats 1917 kg of water per second to high-temperature steam to run its electrical generators.
erastova [34]

Complete Question

A large power plant heats 1917 kg of water per second to high-temperature steam to run its electrical generators.

(a) How much heat transfer is needed each second to raise the water temperature from 35.0°C to 100°C, boil it, and then raise the resulting steam from 100°C to 450°C? Specific heat of water is 4184 J/(kg · °C), the latent heat of vaporization of water is 2256 kJ/kg, and the specific heat of steam is 1520 J/(kg · °C).

J

(b) How much power is needed in megawatts? (Note: In real power plants, this process occurs under high pressure, which alters the boiling point. The results of this problem are only approximate.)

MW

Answer:

The heat transferred is  Q = 5.866 * 10^9 J

The power is  P = 5866\  MW

Explanation:

From the question we are told that

      Mass of the water per second is m = 1917 \ kg

      The initial temperature of the water is T_i  = 35^oC

      The boiling point of water is  T_b = 100^oC

      The final temperature T_f = 450^oC

      The latent heat of vapourization of water is  c__{L}} = 2256*10^3 J/kg

      The specific heat of water c_w = 4184 J/kg^oC

      The specific heat of stem is C_s =1520 \ J/kg ^oC

Generally the heat needed each second is mathematically represented as

         Q = m[c_w (T_i - T_b) + m* c__{L}}  + m* c__{S}} (T_f - T_b)]

Then substituting the value

        Q = m[c_w [T_i - T_b] + c__{L}}  + C__{S}} [T_f - T_b]]

         Q = 1917 [(4184) [100 - 35] + [2256 * 10^3]  +[1520]  [450 - 100]]

         Q = 1917 * [3.05996 * 10^6]

         Q = 5.866 * 10^9 J

The power required is mathematically represented as

         P = \frac{Q}{t}

From the question t = 1\ s

So  

        P = \frac{5.866 *10^9}{1}

        P = 5866*10^6 \ W

        P = 5866\  MW

6 0
3 years ago
You and a friend each hold a lump of wet clay. Each lump has a mass of 30 grams. You each toss your lump of clay into the air, w
Vesna [10]

Answer:

\ \text{m/s}

Explanation:

u_1 = Velocity of one lump = 3x+3y-3z

u_2 = Velocity of the other lump = -4x+0y-4z

m = Mass of each lump = 30\ \text{g}

The collision is perfectly inelastic as the lumps stick to each other so we have the relation

mu_1+mu_2=(m+m)v\\\Rightarrow m(u_1+u_2)=2mv\\\Rightarrow v=\dfrac{u_1+u_2}{2}\\\Rightarrow v=\dfrac{3x+3y-3z-4x+0y-4z}{2}\\\Rightarrow v=-0.5x+1.5y-3.5z=\ \text{m/s}

The velocity of the stuck-together lump just after the collision is \ \text{m/s}.

4 0
3 years ago
A beam of light has a wavelength of 4.5 x10^-7 meter in a vacuum. the frequency of this light is
valkas [14]
The basic relationship between frequency and wavelength for light (which is an electromagnetic wave) is
c= f \lambda
where c is the speed of light, f the frequency and \lambda the wavelength of the wave. 
Using \lambda=4.5 \cdot 10^{-7} m and c=3 \cdot 10^8 m/s, we can find the value of the frequency:
f= \frac{c}{\lambda}= \frac{3 \cdot 10^8 m/s}{4.5 \cdot 10^{-7} m}=6.7 \cdot 10^{14} Hz
3 0
3 years ago
. A book is moved once around the perimeter of a table of dimensions 2.00 m by 3.00 m. If the book ends up at its initial positi
Lynna [10]

Answer:

10

Explanation:

displacement would be 10 because knowledge

5 0
3 years ago
A seagull flying horizontally over the ocean at a constant speed of 2.60 m/s carries a small fish in its mouth. It accidentally
Ivenika [448]

(a) +2.60 m/s

The motion of the fish dropped by the seagul is a projectile motion, which consists of two independent motions:

- a horizontal uniform motion, at constant speed

- a vertical motion, at constant acceleration (acceleration of gravity, g=-9.8 m/s^2, downward)

In this part we are only interested in the horizontal motion. As we said the horizontal component of the fish's velocity does not change, therefore its value when the fish reaches the ocean is equal to its initial value, which is the speed at which the seagull was flying (because it was flying horizontally):

v_x = +2.60 m/s

(b) -17.2 m/s

The vertical component of the fish's velocity instead follows the equation:

v_y = u_y +gt

where

u_y = 0 is the initial vertical velocity, which is zero

g=-9.8 m/s^2 is the acceleration of gravity

t is the time

Since the fish reaches the ocean at t = 1.75 s, we can substitute this time into the formula to find the final vertical velocity:

v_y = 0+(-9.8)(1.75)=-17.2 m/s

where the negative sign indicates the direction (downward).

(c)

The horizontal component of the fish's velocity would increase

The vertical component of the fish's velocity would stay the same.

As we said from part (a) and (b):

- The horizontal component of the fish's velocity is constant during the motion and it is equal to the initial velocity of the seagull -> so if the seagull's initial speed increases, the horizontal velocity of the fish will increase too

- The vertical component of the fish's velocity does not depend on the original speed of the seagull, therefore it is not affected.

4 0
3 years ago
Other questions:
  • Are soaps salts true or false
    7·1 answer
  • On a spring break vacation you decide to visit the grand canyon near flagstaff, arizona. then you head south to visit some frien
    14·1 answer
  • At the top of a giant swing on the gymnastics high bar, candy's velocity is 1 m/s, and she is 3.5 m high. if candy's mass is 50
    12·1 answer
  • A _____ is a device that multiplies force or increases speed and makes work easier.
    12·2 answers
  • A 0.50-kg box is attached to an ideal spring of force constant (spring constant) 20 N/m on a horizontal, frictionless floor. The
    12·1 answer
  • Suppose that water is pouring into a swimming pool in the shape of a right circular cylinder at a constant rate of 5 cubic feet
    15·1 answer
  • In American football how many points.... look at the pic
    10·2 answers
  • Twenty is the _________________ of potassium.
    5·2 answers
  • A factory worker pushes a 31.0 kg crate a distance of 4.20 m along a level floor by pushing downward at an angle of 32.0 ∘ below
    15·1 answer
  • An apple in a tree has a gravitational potential energy of 175j. And a mass of 0.36 how high from the ground is the apple
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!