Answer:
a)
And then we have our probability distribution like this:
X | 0 | 1 | 2 |
P(X) | 0.7921 | 0.1958 | 0.0121|
b) 
Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:

Solution for the problem
Part a
On this case since we select a sample size of n =2 we have the following values for the number of left handed X=0,1,2. We can find the probabilities for each case since we know that p=0.11.
And then we have our probability distribution like this:
X | 0 | 1 | 2 |
P(X) | 0.7921 | 0.1958 | 0.0121|
Part b
For this case we want this probability:

16 ounces = 1 pound
2x16 + 3 = 35
56 - 35 = 21
21 ounces
Respuesta: Es más probable sacar un mango.
Explicación:
La probabilidad se refiere a la posibilidad de que un evento occura y no otro. En el caso que se describe, la probabilidad de sacar cada fruta puede ser calculada dividiendo el total de cada fruta en el número de frutas totales:
Probabilidad de sacar un mango:
=
=
Probabilidad de sacar una piña:

De acuerdo a lo anterior la probabilidad de sacar un mango es de 0.6 o de 60% (multiplica la probabilidad por 100 para saber su equivalente en porcentaje), mientras que la probabilidad de sacar un mango es de 0.4 o 40% lo cual es mucho más bajo. Es decir que es más probable sacar un mango.
If you mean it's $5 for each item and then you add $25,000 to it, then the equation would be
y=5(x)+25,000
let me know if that's what you were asking
Answer:
D.
Step-by-step explanation:
The solution is where the lines intersect which is at the point (3,2).
So the answer is Option D.
The point (3,2) satisfies both equations.