1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
2 years ago
9

Italian Tours offers a daily sightseeing trip around Florence. The list below gives the number of people who made the trip for a

selection of summer days.
27, 56, 64, 36, 40, 29, 27, 56, 30

Find the range of the data set.
Mathematics
1 answer:
den301095 [7]2 years ago
4 0

Answer:

37

Step-by-step explanation:

Highest - lowest = range

64-27= 37

You might be interested in
this is due in less the 30 minutes and this is my last question on the assignment please help and show work. will give brainlies
Oduvanchick [21]

Answer:

22,100

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Which two values of x are roots of the polynomial below? x2 + 3x - 5
lesya692 [45]

Answer:

Step-by-step explanation:

The roots are the values of x for which x² + 3x - 5 = 0.

Quadratic formula:

x = [-3±√(3²-4(1)(-5))]/(2·1) = [-3±√29]/2

3 0
3 years ago
Use the grouping method to factor the polynomial below completely.
Paha777 [63]

Answer:

(x²+5)(x+2)

simple find the common factor between x³ and 2x² and the cf of 5x and 10

u will end up with these results then^

4 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
1, 4, 13, 40, 121 what is the next number in the pattern
mart [117]
Add powers of 3.
1 + 3 = 4
4 + 9 = 13 = 4 + 3^2
13 + 27 = 40 = 13 + 3^3
40 + 81 = 121 = 40 + 3^4
Now you need to add 3^5 to 121.

121 + 3^5 = 121 + 243 = 364
7 0
3 years ago
Other questions:
  • What is the length of one side of a cube that has a surface area of 3456 square mm?
    5·2 answers
  • Which elevation is farthest from sea level (0 feet)?<br><br> 220 m<br> -80 m<br> 45 m<br> -120 m
    15·2 answers
  • Explain why the two equations below have the same solutions. x + 3y = −1 −2x − 6y = 2
    12·1 answer
  • I need these two questions!!!
    13·1 answer
  • Making handcrafted pottery generally takes two major steps: wheel throwing and firing. The time of wheel throwing and the time o
    5·1 answer
  • How are these two constants of proportionality related to each other?<br><br>0.01<br><br>0.1
    14·1 answer
  • Carlos is going on a boat tour. The boat will travel a total distance of 35 kilometers during the 7-hour tour. If the boat trave
    5·2 answers
  • (-5x^2+2x+6)-(9x^2+2x+9)+(-6x^2+5x-3) simplified
    14·2 answers
  • The water level in Rocky's lake changes on an average of -7/16 every 3 years. Based on the rate of the level, how much will the
    12·1 answer
  • Maura and Louis have $75 together to
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!